We study the spin-orbit coupling induced by the splitting between TE and TM optical modes in a photonic honeycomb lattice. Using a tight-binding approach, we calculate analytically the band structure. Close to the Dirac point, we derive an effective Hamiltonian. We find that the local reduced symmetry (${D}_{3h}$) transforms the TE-TM effective magnetic field into an emergent field with a Dresselhaus symmetry. As a result, particles become massive, but no gap opens. The emergent field symmetry is revealed by the optical spin Hall effect.