双稳态
混乱的
物理
联轴节(管道)
统计物理学
亚稳态
人口
相干态
振荡(细胞信号)
国家(计算机科学)
量子力学
数学
计算机科学
量子
生物
机械工程
遗传学
工程类
社会学
人口学
人工智能
算法
作者
Arindam Mishra,Chittaranjan Hens,Mridul Bose,Prodyot Kumar Roy,Syamal K. Dana
标识
DOI:10.1103/physreve.92.062920
摘要
We observe chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (called as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. Interestingly, we also recorded a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrates from one to another population. To test the generality of the coupling configuration, we present another example of bistable system, the van der Pol-Duffing system where the chimeralike states are observed, however, the coherent population is periodic or quasiperiodic and the incoherent population is of chaotic in nature. Furthermore, we apply the coupling to a network of chaotic Rössler system where we find the chaos-chaos chimeralike states.
科研通智能强力驱动
Strongly Powered by AbleSci AI