A fast form approach to measuring technology acceptance and other constructs

规则网络 利克特量表 比例(比率) 技术接受模型 度量(数据仓库) 语义差异 心理学 计算机科学 结构方程建模 社会心理学 数据挖掘 可用性 人机交互 机器学习 发展心理学 物理 量子力学
作者
Wynne W. Chin,Norman Johnson,Andrew Schwarz
标识
DOI:10.5555/2017399.2017402
摘要

Nearly all prior studies on the technology acceptance model (TAM) have used Likert scales to measure the model's constructs, but the use of only this type of scale has two shortcomings. One is that such use prevents us from exposing the model's constructs to a robust test of their measure and relationships to each other, termed their nomological validity. The other is that such use leaves us unsure about whether or not we have selected an efficient way, in terms of survey completion time, to assess these constructs. Past researchers have used short form scales to address the issue of efficiency, but there are problems that may result from such efforts. In this study, we address both shortcomings by exploring the use of a semantic differential scale, which we refer to as a fast form, to assess the constructs of TAM. In this regard, we do three things. First, we describe how fast form as a scale may be developed. Second, we conduct a psychometric evaluation of the constructs that are measured by the fast form and examine their relationships. Third, we assess the efficiency of the fast form by comparing the time required to complete a survey with it to that which is required to complete a survey with Likert scales. Our results confirm that the constructs that are measured by the fast form are psychometrically equivalent to those that are measured by the Likert scales. The relationship among these constructs was unchanged, providing strong evidence for nomological validity. The fast form also yielded a 40 percent reduction in the survey completion time, proving its superior efficiency. We conclude with a description of the implications of these results for research and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊牛排发布了新的文献求助10
3秒前
harry发布了新的文献求助10
4秒前
顾翩翩完成签到,获得积分10
8秒前
bkagyin应助知性的书竹采纳,获得10
8秒前
帅气念梦完成签到 ,获得积分10
10秒前
CodeCraft应助飞快的万声采纳,获得10
11秒前
11秒前
脑洞疼应助nuisance采纳,获得10
13秒前
yun发布了新的文献求助10
13秒前
bole发布了新的文献求助10
14秒前
小楠楠发布了新的文献求助10
14秒前
Gyrate完成签到,获得积分10
15秒前
16秒前
Shishulong发布了新的文献求助10
16秒前
李爱国应助Silence采纳,获得10
16秒前
19秒前
20秒前
21秒前
互助遵法尚德应助ZZRR采纳,获得10
21秒前
YJY完成签到,获得积分10
22秒前
23秒前
25秒前
Richard发布了新的文献求助10
26秒前
一薪发布了新的文献求助10
27秒前
交院发布了新的文献求助10
27秒前
牛肉拉面完成签到,获得积分20
28秒前
星辰大海应助王玄琳采纳,获得10
30秒前
科研的狗完成签到 ,获得积分10
30秒前
31秒前
32秒前
体贴海白发布了新的文献求助20
32秒前
33秒前
共享精神应助科研探索者采纳,获得10
33秒前
半斤发布了新的文献求助10
33秒前
顾矜应助闪闪善若采纳,获得10
33秒前
KHromance完成签到,获得积分10
33秒前
wise111发布了新的文献求助10
36秒前
ding应助等待凡波采纳,获得10
37秒前
37秒前
xx发布了新的文献求助10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329232
求助须知:如何正确求助?哪些是违规求助? 2959017
关于积分的说明 8593599
捐赠科研通 2637442
什么是DOI,文献DOI怎么找? 1443516
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656119