A fast form approach to measuring technology acceptance and other constructs

规则网络 利克特量表 比例(比率) 技术接受模型 度量(数据仓库) 语义差异 心理学 计算机科学 结构方程建模 社会心理学 数据挖掘 可用性 人机交互 机器学习 物理 发展心理学 量子力学
作者
Wynne W. Chin,Norman Johnson,Andrew Schwarz
标识
DOI:10.5555/2017399.2017402
摘要

Nearly all prior studies on the technology acceptance model (TAM) have used Likert scales to measure the model's constructs, but the use of only this type of scale has two shortcomings. One is that such use prevents us from exposing the model's constructs to a robust test of their measure and relationships to each other, termed their nomological validity. The other is that such use leaves us unsure about whether or not we have selected an efficient way, in terms of survey completion time, to assess these constructs. Past researchers have used short form scales to address the issue of efficiency, but there are problems that may result from such efforts. In this study, we address both shortcomings by exploring the use of a semantic differential scale, which we refer to as a fast form, to assess the constructs of TAM. In this regard, we do three things. First, we describe how fast form as a scale may be developed. Second, we conduct a psychometric evaluation of the constructs that are measured by the fast form and examine their relationships. Third, we assess the efficiency of the fast form by comparing the time required to complete a survey with it to that which is required to complete a survey with Likert scales. Our results confirm that the constructs that are measured by the fast form are psychometrically equivalent to those that are measured by the Likert scales. The relationship among these constructs was unchanged, providing strong evidence for nomological validity. The fast form also yielded a 40 percent reduction in the survey completion time, proving its superior efficiency. We conclude with a description of the implications of these results for research and practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助OnlyHarbour采纳,获得10
1秒前
zh_li完成签到,获得积分10
2秒前
cheng完成签到,获得积分10
2秒前
2秒前
NN应助李7采纳,获得20
2秒前
3秒前
pp完成签到,获得积分10
4秒前
浮游应助壮观乘云采纳,获得10
4秒前
jun完成签到 ,获得积分10
4秒前
4秒前
4秒前
嗯嗯应助王之争霸采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
海南发布了新的文献求助10
7秒前
晨晨发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
缓慢尔岚发布了新的文献求助10
9秒前
善良随阴完成签到,获得积分10
9秒前
9秒前
9秒前
奶白的雪子完成签到,获得积分10
9秒前
星辰大海应助阿依咕噜采纳,获得10
11秒前
香蕉觅云应助DG采纳,获得10
11秒前
睡觉了完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Y_Y完成签到,获得积分10
12秒前
zorro3574发布了新的文献求助10
12秒前
12秒前
12秒前
嘿嘿完成签到,获得积分10
13秒前
renxin发布了新的文献求助10
13秒前
14秒前
15秒前
内向孤菱发布了新的文献求助30
15秒前
15秒前
可可布朗尼完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131