化学
色谱法
萃取(化学)
生物固体
固相萃取
液相色谱-质谱法
检出限
串联质谱法
高效液相色谱法
甲醇
质谱法
有机化学
废物管理
工程类
作者
Hongna Zhang,Bei Wen,Xiaoyu Hu,Yali Wu,Lei Luo,Zien Chen,Shuzhen Zhang
标识
DOI:10.1016/j.chroma.2015.05.063
摘要
Degradation of fluorotelomer alcohols (FTOHs) was recognized as an additional source of perfluorocarboxylic acids (PFCAs). Quantification of FTOHs and their degradation products can help shed light on the sources and fates of PFCAs in the environment. In this study, an analytical method was developed for the determination of 6:2 and 8:2 FTOHs, and their degradation products of poly- and perfluorinated acids, including fluorotelomer saturated and unsaturated carboxylic acids (FTCAs and FTUCAs), secondary polyfluorinated alcohols and PFCAs in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The extract efficiencies of different methods including ethyl acetate and methanol (MeOH) for FTOHs and acetonitrile, MeOH, methyl tert-butyl ether (MTBE), NaOH-MeOH and NaOH-MTBE for poly- and perfluorinated acids were tested. The results showed that 6:2 and 8:2 FTOHs and their degradation products could be simultaneously and satisfactorily extracted by MeOH, cleaned up by Envi-Carb graphitized carbon and solid phase extraction, respectively, and determined by UPLC-MS/MS separately. NaOH in the extractant caused the conversion of 6:2 FTCA and 8:2 FTCA into the corresponding FTUCAs. The selected methods have matrix recoveries ranged from 52% to 102%, and detection limits of 0.01-0.46ng/g dry weight for FTOHs and their degradation products in soil and plant. The optimized method was applied successfully to quantify FTOHs and their degradation products in two biosolids-amended soils and plants. The total concentrations of FTOHs in the soils were 44.1±5.8 and 82.6±7.1ng/g, and in plants tissues 3.58±0.25 and 8.33±0.66ng/g. The total concentrations of poly- and perfluorinated acids in the soils were 168.0±13.2 and 349.6±11.2ng/g, and in plants tissues 78.0±6.4 and 75.5±5.3ng/g.
科研通智能强力驱动
Strongly Powered by AbleSci AI