Mildew recognition on maize seed by use of hyperspectral technology

人工智能 支持向量机 人工神经网络 模式识别(心理学) 蚁群优化算法 高光谱成像 核(代数) 计算机科学 二次规划 预处理器 机器学习 数学 数学优化 组合数学
作者
Yinjiang Jia,Zedong Li,Rui Gao,Xiaoyu Zhang,Huaijing Zhang,Zhongbin Su
出处
期刊:Spectroscopy Letters [Informa]
卷期号:55 (4): 240-249 被引量:3
标识
DOI:10.1080/00387010.2022.2053163
摘要

Moldy maize can produce a lot of toxins, which is harmful to human and livestock. Therefore, early detection of maize mildew is of great significance. In this study, the hyperspectral image data of maize seed with five mildew grades of the same variety were selected as the data source, by comparing a variety of preprocessing and feature extraction methods, the combination method of standard normal variate and uninformative variable elimination was selected to process hyperspectral data. In view of the shortcomings of traditional BP neural network, such as easy to fall into local optimum and slow convergence speed, BP network with ant colony optimization classification model was established by introducing ant colony optimization weight threshold. Support vector machine based on linear kernel, support vector machine based on quadratic kernel and BP neural network model were compared and the classification results were analyzed. The results show that the standard normal variate and uninformative variable elimination can effectively eliminate the error caused by solid particle surface scattering and reduce the amount of data. Among the four recognition models, BP network with ant colony optimization has the highest classification accuracy, the overall classification accuracy reaches 92.00%, which is 8.00% higher than that of the BP neural network, 12.00% higher than the support vector machine with linear kernel function and 16.00% higher than the support vector machine with quadratic kernel function, indicating that the ant colony optimization can effectively improve the recognition accuracy of the BP neural network model. This paper can provide technical support and new ideas for maize seed early mildew detection and maize seed selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韵寒发布了新的文献求助10
刚刚
归尘发布了新的文献求助10
1秒前
1秒前
1秒前
思源应助小英采纳,获得10
2秒前
生动惜灵发布了新的文献求助20
2秒前
田様应助云起龙都采纳,获得10
2秒前
3秒前
许多年以后完成签到,获得积分10
4秒前
4秒前
4秒前
vooooo发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助实验狗采纳,获得10
5秒前
6秒前
小元发布了新的文献求助10
7秒前
樊傲云完成签到,获得积分10
7秒前
南北发布了新的文献求助10
8秒前
8秒前
朴实夏旋发布了新的文献求助10
9秒前
科研通AI2S应助vooooo采纳,获得10
10秒前
研友_VZG7GZ应助vooooo采纳,获得10
10秒前
韵寒完成签到,获得积分10
10秒前
提米橘发布了新的文献求助20
11秒前
sincyking完成签到,获得积分20
11秒前
12秒前
求求接收吧应助安安采纳,获得10
15秒前
och3完成签到,获得积分10
15秒前
dave发布了新的文献求助10
16秒前
16秒前
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
单薄惜文应助科研通管家采纳,获得10
17秒前
南风应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
南风应助科研通管家采纳,获得10
17秒前
山月应助科研通管家采纳,获得10
17秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434062
求助须知:如何正确求助?哪些是违规求助? 3031257
关于积分的说明 8941535
捐赠科研通 2719231
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689418
邀请新用户注册赠送积分活动 685548