Mildew recognition on maize seed by use of hyperspectral technology

人工智能 支持向量机 人工神经网络 模式识别(心理学) 蚁群优化算法 高光谱成像 核(代数) 计算机科学 二次规划 预处理器 机器学习 数学 数学优化 组合数学
作者
Yinjiang Jia,Zedong Li,Rui Gao,Xiaoyu Zhang,Huaijing Zhang,Zhongbin Su
出处
期刊:Spectroscopy Letters [Taylor & Francis]
卷期号:55 (4): 240-249 被引量:5
标识
DOI:10.1080/00387010.2022.2053163
摘要

Moldy maize can produce a lot of toxins, which is harmful to human and livestock. Therefore, early detection of maize mildew is of great significance. In this study, the hyperspectral image data of maize seed with five mildew grades of the same variety were selected as the data source, by comparing a variety of preprocessing and feature extraction methods, the combination method of standard normal variate and uninformative variable elimination was selected to process hyperspectral data. In view of the shortcomings of traditional BP neural network, such as easy to fall into local optimum and slow convergence speed, BP network with ant colony optimization classification model was established by introducing ant colony optimization weight threshold. Support vector machine based on linear kernel, support vector machine based on quadratic kernel and BP neural network model were compared and the classification results were analyzed. The results show that the standard normal variate and uninformative variable elimination can effectively eliminate the error caused by solid particle surface scattering and reduce the amount of data. Among the four recognition models, BP network with ant colony optimization has the highest classification accuracy, the overall classification accuracy reaches 92.00%, which is 8.00% higher than that of the BP neural network, 12.00% higher than the support vector machine with linear kernel function and 16.00% higher than the support vector machine with quadratic kernel function, indicating that the ant colony optimization can effectively improve the recognition accuracy of the BP neural network model. This paper can provide technical support and new ideas for maize seed early mildew detection and maize seed selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun完成签到,获得积分10
刚刚
泽丶完成签到,获得积分10
刚刚
ma完成签到,获得积分10
刚刚
朵朵发布了新的文献求助10
刚刚
patamon完成签到 ,获得积分10
刚刚
刚刚
12234完成签到 ,获得积分10
刚刚
短发大叔完成签到,获得积分10
1秒前
夏樱完成签到,获得积分10
1秒前
知无涯者发布了新的文献求助10
2秒前
笑一笑完成签到,获得积分10
2秒前
yrw完成签到,获得积分10
2秒前
踏实绯发布了新的文献求助10
2秒前
HU完成签到,获得积分10
2秒前
宇文惜珊完成签到,获得积分20
2秒前
左右兮完成签到,获得积分10
3秒前
霸气果汁完成签到,获得积分10
3秒前
Lucas应助研友_LaOrMZ采纳,获得10
4秒前
情怀应助顺心寻云采纳,获得10
4秒前
wonderbgt完成签到,获得积分10
4秒前
曾经的慕灵完成签到,获得积分10
4秒前
daijk完成签到,获得积分10
4秒前
爆炒菜头完成签到,获得积分10
5秒前
皇帝的床帘完成签到,获得积分10
5秒前
壮观的谷冬完成签到,获得积分10
5秒前
巫马炎彬完成签到,获得积分0
5秒前
shzhang完成签到,获得积分10
5秒前
十六月夜完成签到,获得积分10
5秒前
37完成签到,获得积分10
6秒前
tans0008完成签到,获得积分10
6秒前
衣吾余完成签到,获得积分10
6秒前
FBQZDJG2122完成签到,获得积分10
6秒前
Stella应助ZXFFF采纳,获得30
6秒前
111发布了新的文献求助30
6秒前
蓝桉完成签到,获得积分10
6秒前
zoes完成签到 ,获得积分10
6秒前
zzz完成签到 ,获得积分10
7秒前
小米完成签到,获得积分10
7秒前
向乐瑶发布了新的文献求助10
7秒前
bubu完成签到,获得积分10
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347989
求助须知:如何正确求助?哪些是违规求助? 4482270
关于积分的说明 13949609
捐赠科研通 4380739
什么是DOI,文献DOI怎么找? 2407067
邀请新用户注册赠送积分活动 1399655
关于科研通互助平台的介绍 1372925