Mildew recognition on maize seed by use of hyperspectral technology

人工智能 支持向量机 人工神经网络 模式识别(心理学) 蚁群优化算法 高光谱成像 核(代数) 计算机科学 二次规划 预处理器 机器学习 数学 数学优化 组合数学
作者
Yinjiang Jia,Zedong Li,Rui Gao,Xiaoyu Zhang,Huaijing Zhang,Zhongbin Su
出处
期刊:Spectroscopy Letters [Taylor & Francis]
卷期号:55 (4): 240-249 被引量:5
标识
DOI:10.1080/00387010.2022.2053163
摘要

Moldy maize can produce a lot of toxins, which is harmful to human and livestock. Therefore, early detection of maize mildew is of great significance. In this study, the hyperspectral image data of maize seed with five mildew grades of the same variety were selected as the data source, by comparing a variety of preprocessing and feature extraction methods, the combination method of standard normal variate and uninformative variable elimination was selected to process hyperspectral data. In view of the shortcomings of traditional BP neural network, such as easy to fall into local optimum and slow convergence speed, BP network with ant colony optimization classification model was established by introducing ant colony optimization weight threshold. Support vector machine based on linear kernel, support vector machine based on quadratic kernel and BP neural network model were compared and the classification results were analyzed. The results show that the standard normal variate and uninformative variable elimination can effectively eliminate the error caused by solid particle surface scattering and reduce the amount of data. Among the four recognition models, BP network with ant colony optimization has the highest classification accuracy, the overall classification accuracy reaches 92.00%, which is 8.00% higher than that of the BP neural network, 12.00% higher than the support vector machine with linear kernel function and 16.00% higher than the support vector machine with quadratic kernel function, indicating that the ant colony optimization can effectively improve the recognition accuracy of the BP neural network model. This paper can provide technical support and new ideas for maize seed early mildew detection and maize seed selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emmm发布了新的文献求助10
刚刚
博修发布了新的文献求助10
1秒前
2秒前
流浪完成签到,获得积分10
2秒前
3秒前
qianlan完成签到,获得积分10
3秒前
副本完成签到 ,获得积分10
3秒前
云雨完成签到 ,获得积分10
4秒前
bofu发布了新的文献求助10
4秒前
run发布了新的文献求助10
5秒前
不如看海发布了新的文献求助10
7秒前
dreamwalk完成签到 ,获得积分10
8秒前
田様应助yuting采纳,获得10
10秒前
科研通AI2S应助博修采纳,获得10
10秒前
bofu发布了新的文献求助10
10秒前
11秒前
星辰大海应助大号安全蛋采纳,获得10
12秒前
万能图书馆应助郑郑得富采纳,获得10
13秒前
bofu发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
paper完成签到,获得积分10
18秒前
Jinna706完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
健忘惜海发布了新的文献求助10
20秒前
bofu发布了新的文献求助10
21秒前
21秒前
Liang发布了新的文献求助20
22秒前
陈最完成签到,获得积分10
22秒前
23秒前
23秒前
run完成签到,获得积分10
24秒前
24秒前
AI发布了新的文献求助20
25秒前
HJL完成签到 ,获得积分10
26秒前
bofu发布了新的文献求助30
26秒前
研友_LBaaX8发布了新的文献求助20
27秒前
yoga发布了新的文献求助10
27秒前
fzzf发布了新的文献求助30
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150