RA V-Net: deep learning network for automated liver segmentation

雅卡索引 分割 人工智能 Sørensen–骰子系数 计算机科学 相似性(几何) 特征(语言学) 残余物 市场细分 深度学习 网(多面体) 模式识别(心理学) 图像分割 掷骰子 计算机视觉 图像(数学) 数学 统计 算法 业务 哲学 几何学 营销 语言学
作者
Zhiqi Lee,Sumin Qi,ChongChong Fan,Ziwei Xie,Jing Meng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125022-125022 被引量:3
标识
DOI:10.1088/1361-6560/ac7193
摘要

Accurate segmentation of the liver is a prerequisite for the diagnosis of disease. Automated segmentation is an important application of computer-aided detection and diagnosis of liver disease. In recent years, automated processing of medical images has gained breakthroughs. However, the low contrast of abdominal scan CT images and the complexity of liver morphology make accurate automatic segmentation challenging. In this paper, we propose RA V-Net, which is an improved medical image automatic segmentation model based on U-Net. It has the following three main innovations. CofRes Module (Composite Original Feature Residual Module) is proposed. With more complex convolution layers and skip connections to make it obtain a higher level of image feature extraction capability and prevent gradient disappearance or explosion. AR Module (Attention Recovery Module) is proposed to reduce the computational effort of the model. In addition, the spatial features between the data pixels of the encoding and decoding modules are sensed by adjusting the channels and LSTM convolution. Finally, the image features are effectively retained. CA Module (Channel Attention Module) is introduced, which used to extract relevant channels with dependencies and strengthen them by matrix dot product, while weakening irrelevant channels without dependencies. The purpose of channel attention is achieved. The attention mechanism provided by LSTM convolution and CA Module are strong guarantees for the performance of the neural network. The accuracy of U-Net network: 0.9862, precision: 0.9118, DSC: 0.8547, JSC: 0.82. The evaluation metrics of RA V-Net, accuracy: 0.9968, precision: 0.9597, DSC: 0.9654, JSC: 0.9414. The most representative metric for the segmentation effect is DSC, which improves 0.1107 over U-Net, and JSC improves 0.1214.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助木木彡采纳,获得20
刚刚
ght发布了新的文献求助10
1秒前
2秒前
twob发布了新的文献求助10
2秒前
5秒前
wanci应助晶生采纳,获得10
5秒前
6秒前
邢夏之发布了新的文献求助10
8秒前
yznfly完成签到,获得积分0
9秒前
11完成签到,获得积分20
10秒前
jay完成签到 ,获得积分10
11秒前
yzz发布了新的文献求助20
11秒前
Jeffery426完成签到,获得积分10
11秒前
大模型应助twob采纳,获得10
12秒前
共享精神应助知识探索家采纳,获得10
13秒前
18秒前
fffzy完成签到,获得积分10
19秒前
20秒前
11关注了科研通微信公众号
20秒前
yzz完成签到,获得积分20
20秒前
savica完成签到,获得积分10
22秒前
葛稀完成签到,获得积分10
23秒前
基金中中中完成签到,获得积分10
23秒前
mc应助王旺碎冰冰采纳,获得10
23秒前
23秒前
25秒前
下雨的颜色完成签到,获得积分10
25秒前
26秒前
我爱吃水果完成签到,获得积分10
26秒前
晶生完成签到,获得积分10
27秒前
桐桐应助早点睡采纳,获得10
28秒前
Hello应助cai采纳,获得10
28秒前
water应助晚霞常有遗憾采纳,获得10
28秒前
张春月完成签到,获得积分10
29秒前
Ccccn完成签到 ,获得积分10
29秒前
domkps完成签到 ,获得积分10
29秒前
小俞发布了新的文献求助10
30秒前
zyx完成签到,获得积分10
31秒前
aaa关闭了aaa文献求助
31秒前
wanci应助我爱吃水果采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278