RA V-Net: deep learning network for automated liver segmentation

雅卡索引 分割 人工智能 Sørensen–骰子系数 计算机科学 相似性(几何) 特征(语言学) 残余物 市场细分 深度学习 网(多面体) 模式识别(心理学) 图像分割 掷骰子 计算机视觉 图像(数学) 数学 统计 算法 业务 哲学 几何学 营销 语言学
作者
Zhiqi Lee,Sumin Qi,ChongChong Fan,Ziwei Xie,Jing Meng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125022-125022 被引量:3
标识
DOI:10.1088/1361-6560/ac7193
摘要

Accurate segmentation of the liver is a prerequisite for the diagnosis of disease. Automated segmentation is an important application of computer-aided detection and diagnosis of liver disease. In recent years, automated processing of medical images has gained breakthroughs. However, the low contrast of abdominal scan CT images and the complexity of liver morphology make accurate automatic segmentation challenging. In this paper, we propose RA V-Net, which is an improved medical image automatic segmentation model based on U-Net. It has the following three main innovations. CofRes Module (Composite Original Feature Residual Module) is proposed. With more complex convolution layers and skip connections to make it obtain a higher level of image feature extraction capability and prevent gradient disappearance or explosion. AR Module (Attention Recovery Module) is proposed to reduce the computational effort of the model. In addition, the spatial features between the data pixels of the encoding and decoding modules are sensed by adjusting the channels and LSTM convolution. Finally, the image features are effectively retained. CA Module (Channel Attention Module) is introduced, which used to extract relevant channels with dependencies and strengthen them by matrix dot product, while weakening irrelevant channels without dependencies. The purpose of channel attention is achieved. The attention mechanism provided by LSTM convolution and CA Module are strong guarantees for the performance of the neural network. The accuracy of U-Net network: 0.9862, precision: 0.9118, DSC: 0.8547, JSC: 0.82. The evaluation metrics of RA V-Net, accuracy: 0.9968, precision: 0.9597, DSC: 0.9654, JSC: 0.9414. The most representative metric for the segmentation effect is DSC, which improves 0.1107 over U-Net, and JSC improves 0.1214.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xicifish发布了新的文献求助10
刚刚
刚刚
Akim应助Bioyanggu采纳,获得10
1秒前
NexusExplorer应助jerry采纳,获得10
1秒前
2秒前
Sober发布了新的文献求助10
2秒前
哈呼呼发布了新的文献求助50
2秒前
万能图书馆应助柔弱冰棍采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
bulu完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
123完成签到,获得积分10
8秒前
10秒前
qiuqiu完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
华仔应助李昶采纳,获得10
16秒前
科研人发布了新的文献求助10
16秒前
16秒前
领导范儿应助lotus采纳,获得10
17秒前
小太阳完成签到,获得积分10
17秒前
17秒前
jerry发布了新的文献求助10
19秒前
xm发布了新的文献求助30
19秒前
Meteor发布了新的文献求助10
19秒前
豆芽菜发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
七海老祖完成签到,获得积分10
21秒前
英姑应助英勇海采纳,获得10
22秒前
整齐香岚完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775036
求助须知:如何正确求助?哪些是违规求助? 5621513
关于积分的说明 15437389
捐赠科研通 4907483
什么是DOI,文献DOI怎么找? 2640665
邀请新用户注册赠送积分活动 1588560
关于科研通互助平台的介绍 1543434