RA V-Net: deep learning network for automated liver segmentation

雅卡索引 分割 人工智能 Sørensen–骰子系数 计算机科学 相似性(几何) 特征(语言学) 残余物 市场细分 深度学习 网(多面体) 模式识别(心理学) 图像分割 掷骰子 计算机视觉 图像(数学) 数学 统计 算法 业务 哲学 几何学 营销 语言学
作者
Zhiqi Lee,Sumin Qi,ChongChong Fan,Ziwei Xie,Jing Meng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125022-125022 被引量:3
标识
DOI:10.1088/1361-6560/ac7193
摘要

Accurate segmentation of the liver is a prerequisite for the diagnosis of disease. Automated segmentation is an important application of computer-aided detection and diagnosis of liver disease. In recent years, automated processing of medical images has gained breakthroughs. However, the low contrast of abdominal scan CT images and the complexity of liver morphology make accurate automatic segmentation challenging. In this paper, we propose RA V-Net, which is an improved medical image automatic segmentation model based on U-Net. It has the following three main innovations. CofRes Module (Composite Original Feature Residual Module) is proposed. With more complex convolution layers and skip connections to make it obtain a higher level of image feature extraction capability and prevent gradient disappearance or explosion. AR Module (Attention Recovery Module) is proposed to reduce the computational effort of the model. In addition, the spatial features between the data pixels of the encoding and decoding modules are sensed by adjusting the channels and LSTM convolution. Finally, the image features are effectively retained. CA Module (Channel Attention Module) is introduced, which used to extract relevant channels with dependencies and strengthen them by matrix dot product, while weakening irrelevant channels without dependencies. The purpose of channel attention is achieved. The attention mechanism provided by LSTM convolution and CA Module are strong guarantees for the performance of the neural network. The accuracy of U-Net network: 0.9862, precision: 0.9118, DSC: 0.8547, JSC: 0.82. The evaluation metrics of RA V-Net, accuracy: 0.9968, precision: 0.9597, DSC: 0.9654, JSC: 0.9414. The most representative metric for the segmentation effect is DSC, which improves 0.1107 over U-Net, and JSC improves 0.1214.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒适千秋完成签到,获得积分10
1秒前
1秒前
英姑应助汉城采纳,获得10
1秒前
honhu753发布了新的文献求助20
1秒前
wjx发布了新的文献求助10
1秒前
传奇3应助漂亮拳采纳,获得10
2秒前
Vesta完成签到,获得积分10
3秒前
3秒前
ning发布了新的文献求助10
3秒前
3秒前
行者完成签到,获得积分10
3秒前
www完成签到,获得积分10
4秒前
linya发布了新的文献求助10
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
5秒前
善学以致用应助玛卡巴卡采纳,获得10
5秒前
斯文的迎松完成签到,获得积分10
5秒前
tigerxhz发布了新的文献求助50
6秒前
7秒前
Yasing发布了新的文献求助10
7秒前
阿元发布了新的文献求助10
7秒前
爆米花应助shirabuki采纳,获得10
7秒前
时尚友安完成签到,获得积分10
7秒前
Akim应助bingsu108采纳,获得10
7秒前
糕手发布了新的文献求助10
8秒前
8秒前
8秒前
prisfanstein完成签到,获得积分10
8秒前
天天快乐应助linya采纳,获得10
9秒前
量子星尘发布了新的文献求助50
9秒前
10秒前
行者发布了新的文献求助10
10秒前
超人不会飞完成签到 ,获得积分10
10秒前
10秒前
张泸尹完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579