亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RA V-Net: deep learning network for automated liver segmentation

雅卡索引 分割 人工智能 Sørensen–骰子系数 计算机科学 相似性(几何) 特征(语言学) 残余物 市场细分 深度学习 网(多面体) 模式识别(心理学) 图像分割 掷骰子 计算机视觉 图像(数学) 数学 统计 算法 业务 哲学 几何学 营销 语言学
作者
Zhiqi Lee,Sumin Qi,ChongChong Fan,Ziwei Xie,Jing Meng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125022-125022 被引量:3
标识
DOI:10.1088/1361-6560/ac7193
摘要

Accurate segmentation of the liver is a prerequisite for the diagnosis of disease. Automated segmentation is an important application of computer-aided detection and diagnosis of liver disease. In recent years, automated processing of medical images has gained breakthroughs. However, the low contrast of abdominal scan CT images and the complexity of liver morphology make accurate automatic segmentation challenging. In this paper, we propose RA V-Net, which is an improved medical image automatic segmentation model based on U-Net. It has the following three main innovations. CofRes Module (Composite Original Feature Residual Module) is proposed. With more complex convolution layers and skip connections to make it obtain a higher level of image feature extraction capability and prevent gradient disappearance or explosion. AR Module (Attention Recovery Module) is proposed to reduce the computational effort of the model. In addition, the spatial features between the data pixels of the encoding and decoding modules are sensed by adjusting the channels and LSTM convolution. Finally, the image features are effectively retained. CA Module (Channel Attention Module) is introduced, which used to extract relevant channels with dependencies and strengthen them by matrix dot product, while weakening irrelevant channels without dependencies. The purpose of channel attention is achieved. The attention mechanism provided by LSTM convolution and CA Module are strong guarantees for the performance of the neural network. The accuracy of U-Net network: 0.9862, precision: 0.9118, DSC: 0.8547, JSC: 0.82. The evaluation metrics of RA V-Net, accuracy: 0.9968, precision: 0.9597, DSC: 0.9654, JSC: 0.9414. The most representative metric for the segmentation effect is DSC, which improves 0.1107 over U-Net, and JSC improves 0.1214.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情的寇完成签到 ,获得积分10
1秒前
绿毛水怪完成签到,获得积分10
1秒前
lsc完成签到,获得积分10
4秒前
lg发布了新的文献求助10
6秒前
小fei完成签到,获得积分10
8秒前
8秒前
麻辣薯条完成签到,获得积分10
11秒前
13秒前
89发布了新的文献求助10
15秒前
流苏完成签到,获得积分0
18秒前
18秒前
流苏2完成签到,获得积分10
21秒前
上官若男应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得30
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
24秒前
昵称完成签到,获得积分10
27秒前
云水雾心发布了新的文献求助10
27秒前
Msure发布了新的文献求助10
29秒前
我是老大应助89采纳,获得10
58秒前
NLJY完成签到,获得积分10
1分钟前
所所应助失眠采白采纳,获得10
1分钟前
小青椒应助jjjjjj采纳,获得30
1分钟前
1分钟前
失眠采白发布了新的文献求助10
1分钟前
1分钟前
菠萝包完成签到 ,获得积分10
2分钟前
Dmooou完成签到,获得积分10
2分钟前
2分钟前
开心惜梦完成签到,获得积分10
2分钟前
羟基磷酸钙完成签到,获得积分10
2分钟前
火星上誉完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小马甲应助云水雾心采纳,获得10
3分钟前
3分钟前
XueXiTong完成签到,获得积分10
3分钟前
云水雾心发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561370
求助须知:如何正确求助?哪些是违规求助? 4646540
关于积分的说明 14678579
捐赠科研通 4587799
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461424