亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RA V-Net: deep learning network for automated liver segmentation

雅卡索引 分割 人工智能 Sørensen–骰子系数 计算机科学 相似性(几何) 特征(语言学) 残余物 市场细分 深度学习 网(多面体) 模式识别(心理学) 图像分割 掷骰子 计算机视觉 图像(数学) 数学 统计 算法 业务 哲学 几何学 营销 语言学
作者
Zhiqi Lee,Sumin Qi,ChongChong Fan,Ziwei Xie,Jing Meng
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125022-125022 被引量:3
标识
DOI:10.1088/1361-6560/ac7193
摘要

Accurate segmentation of the liver is a prerequisite for the diagnosis of disease. Automated segmentation is an important application of computer-aided detection and diagnosis of liver disease. In recent years, automated processing of medical images has gained breakthroughs. However, the low contrast of abdominal scan CT images and the complexity of liver morphology make accurate automatic segmentation challenging. In this paper, we propose RA V-Net, which is an improved medical image automatic segmentation model based on U-Net. It has the following three main innovations. CofRes Module (Composite Original Feature Residual Module) is proposed. With more complex convolution layers and skip connections to make it obtain a higher level of image feature extraction capability and prevent gradient disappearance or explosion. AR Module (Attention Recovery Module) is proposed to reduce the computational effort of the model. In addition, the spatial features between the data pixels of the encoding and decoding modules are sensed by adjusting the channels and LSTM convolution. Finally, the image features are effectively retained. CA Module (Channel Attention Module) is introduced, which used to extract relevant channels with dependencies and strengthen them by matrix dot product, while weakening irrelevant channels without dependencies. The purpose of channel attention is achieved. The attention mechanism provided by LSTM convolution and CA Module are strong guarantees for the performance of the neural network. The accuracy of U-Net network: 0.9862, precision: 0.9118, DSC: 0.8547, JSC: 0.82. The evaluation metrics of RA V-Net, accuracy: 0.9968, precision: 0.9597, DSC: 0.9654, JSC: 0.9414. The most representative metric for the segmentation effect is DSC, which improves 0.1107 over U-Net, and JSC improves 0.1214.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
lngenuo发布了新的文献求助30
36秒前
53秒前
李健的小迷弟应助lngenuo采纳,获得30
55秒前
1分钟前
梅子甜酒发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
MANI发布了新的文献求助10
3分钟前
3分钟前
Orange应助儒雅小馒头采纳,获得10
3分钟前
MANI完成签到,获得积分20
3分钟前
毒蝎King完成签到 ,获得积分10
3分钟前
丘比特应助MANI采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
GingerF应助科研通管家采纳,获得20
3分钟前
hhuajw完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
佳言2009完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
葡萄酸奶冻发布了新的文献求助150
4分钟前
cc完成签到,获得积分10
4分钟前
JamesPei应助葡萄酸奶冻采纳,获得10
5分钟前
儒雅小馒头完成签到,获得积分10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
临子完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714934
求助须知:如何正确求助?哪些是违规求助? 5228380
关于积分的说明 15273850
捐赠科研通 4866077
什么是DOI,文献DOI怎么找? 2612655
邀请新用户注册赠送积分活动 1562837
关于科研通互助平台的介绍 1520105