斑马鱼
内科学
内分泌学
葡萄糖稳态
过剩2
胰岛素
碳水化合物代谢
胰岛素受体
生物
化学
作者
Rui Shao,Xinmeng Liao,Yawen Lan,Hui Zhang,Lin Jiao,Qingyang Du,Dong Han,Qinghui Ai,Kangsen Mai,Min Wan
标识
DOI:10.1096/fj.202200334rr
摘要
1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the most active vitamin D (VD) metabolite, is a steroid hormone playing an important role in many physiological functions in addition to maintaining mineral homeostasis. In this study, we explored the mechanism that the VD regulated insulin pathway and glucose metabolism in zebrafish in vitro and in vivo. Our results show that 1,25(OH)2 D3 significantly enhances the expression of insulin receptor a (insra), insulin receptor substrate 1 (irs1) and glucose transporter 2 (glut2), and promotes glycolysis and glycogenesis, while suppressing gluconeogenesis in zebrafish liver cell line (ZFL) under the condition of high glucose (20 mM), instead of the normal glucose (10 mM). Moreover, consistent results were obtained from the zebrafish fed with VD3 -deficient diet, as well as the cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, results from dual-luciferase reporting system exhibited that 1,25(OH)2 D3 directly activated the transcription of insra, rather than insrb in zebrafish by binding to vitamin D response element (VDRE) located at -181 to -167 bp in the promoter region of insra. Importantly, the 1,25(OH)2 D3 treatment significantly alleviated the symptoms of hyperglycemia in diabetic zebrafish. In conclusion, our study demonstrated that VD activates VDRE located in the promoter area of insra in zebrafish to promote insulin/insra signaling pathway, thereby contributing to the maintenance of glucose homeostasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI