An EEG Data Processing Approach for Emotion Recognition

脑电图 情绪识别 计算机科学 规范化(社会学) 模式识别(心理学) 人工智能 情绪分类 分类器(UML) 语音识别 特征提取 心理学 人类学 精神科 社会学
作者
Guofa Li,Delin Ouyang,Yufei Yuan,Wenbo Li,Zizheng Guo,Xingda Qu,Paul Green
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 10751-10763 被引量:42
标识
DOI:10.1109/jsen.2022.3168572
摘要

As the most direct way to measure the true emotional states of humans, EEG-based emotion recognition has been widely used in affective computing applications. In this paper, we aim to propose a novel emotion recognition approach that relies on a reduced number of EEG electrode channels and at the same time overcomes the negative impact of individual differences to achieve a high recognition accuracy. According to the statistical significance results of EEG power spectral density (PSD) features obtained from the SJTU Emotion EEG Dataset (SEED), six candidate sets of EEG electrode channels are determined. An experiment-level batch normalization (BN) is proposed and applied on the features from the candidate sets, and the normalized features are then used for emotion recognition across individuals. Eleven well-accepted classifiers are used for emotion recognition. The experimental results show that the recognition accuracy when using a small portion of the available electrodes is almost the same or even better than that when using all the channels. Based on the reduced number of electrode channels, the application of experiment-level BN can help further improve the recognition accuracy, specifically from 73.33% to 89.63% when using the LR classifier. These results demonstrate that better and easier emotion recognition performance can be achieved based on the batch normalized features from fewer channels, indicating promising applications of our proposed method in real-time emotion recognition applications in intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DE完成签到,获得积分10
刚刚
Akim应助小张采纳,获得10
刚刚
1秒前
1秒前
小汪快跑发布了新的文献求助10
2秒前
3秒前
3秒前
snow发布了新的文献求助20
3秒前
cinn完成签到,获得积分10
3秒前
希希完成签到 ,获得积分10
4秒前
JamesPei应助小土豆的麻薯采纳,获得10
4秒前
4秒前
CipherSage应助姬师采纳,获得10
4秒前
blueboom发布了新的文献求助10
4秒前
奶绿小丸子完成签到,获得积分10
4秒前
4秒前
ananan完成签到 ,获得积分10
5秒前
tqmx完成签到,获得积分10
5秒前
htx发布了新的文献求助10
5秒前
烟花应助曦谷采纳,获得10
5秒前
脑洞疼应助研友_LN3Vkn采纳,获得10
5秒前
着急的向雁完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
狸子完成签到,获得积分10
7秒前
元冬发布了新的文献求助10
7秒前
脑洞疼应助李lll采纳,获得10
7秒前
JJ完成签到,获得积分10
7秒前
chenyichi发布了新的文献求助10
8秒前
敏感的幻波完成签到 ,获得积分10
8秒前
wangxiaoyating完成签到,获得积分10
8秒前
Zongpeng发布了新的文献求助10
8秒前
yan123完成签到,获得积分10
8秒前
猴子应助奶绿小丸子采纳,获得30
9秒前
科研小白完成签到,获得积分10
9秒前
wuuToiiin完成签到,获得积分10
9秒前
倩倩完成签到 ,获得积分10
10秒前
10秒前
兀那狗子别跑完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415