清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An EEG Data Processing Approach for Emotion Recognition

脑电图 情绪识别 计算机科学 规范化(社会学) 模式识别(心理学) 人工智能 情绪分类 分类器(UML) 语音识别 特征提取 心理学 人类学 精神科 社会学
作者
Guofa Li,Delin Ouyang,Yufei Yuan,Wenbo Li,Zizheng Guo,Xingda Qu,Paul Green
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (11): 10751-10763 被引量:32
标识
DOI:10.1109/jsen.2022.3168572
摘要

As the most direct way to measure the true emotional states of humans, EEG-based emotion recognition has been widely used in affective computing applications. In this paper, we aim to propose a novel emotion recognition approach that relies on a reduced number of EEG electrode channels and at the same time overcomes the negative impact of individual differences to achieve a high recognition accuracy. According to the statistical significance results of EEG power spectral density (PSD) features obtained from the SJTU Emotion EEG Dataset (SEED), six candidate sets of EEG electrode channels are determined. An experiment-level batch normalization (BN) is proposed and applied on the features from the candidate sets, and the normalized features are then used for emotion recognition across individuals. Eleven well-accepted classifiers are used for emotion recognition. The experimental results show that the recognition accuracy when using a small portion of the available electrodes is almost the same or even better than that when using all the channels. Based on the reduced number of electrode channels, the application of experiment-level BN can help further improve the recognition accuracy, specifically from 73.33% to 89.63% when using the LR classifier. These results demonstrate that better and easier emotion recognition performance can be achieved based on the batch normalized features from fewer channels, indicating promising applications of our proposed method in real-time emotion recognition applications in intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
38秒前
40秒前
熊猫胖胖WITH超人完成签到,获得积分20
43秒前
54秒前
耍酷平凡发布了新的文献求助10
59秒前
1分钟前
ewxf2001发布了新的文献求助10
1分钟前
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
荔枝发布了新的文献求助20
1分钟前
ewxf2001完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
cxwcn完成签到 ,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
1分钟前
wmj完成签到,获得积分10
1分钟前
Ava应助落寞的又菡采纳,获得10
2分钟前
刚子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
jiejie完成签到,获得积分10
3分钟前
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
耍酷平凡完成签到,获得积分10
4分钟前
荔枝发布了新的文献求助10
4分钟前
4分钟前
连安阳完成签到,获得积分10
4分钟前
5分钟前
荔枝发布了新的文献求助10
5分钟前
丁老三完成签到 ,获得积分10
6分钟前
6分钟前
Jim发布了新的文献求助10
7分钟前
7分钟前
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
7分钟前
Unlisted发布了新的文献求助10
7分钟前
落寞的又菡完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108