已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An EEG Data Processing Approach for Emotion Recognition

脑电图 情绪识别 计算机科学 规范化(社会学) 模式识别(心理学) 人工智能 情绪分类 分类器(UML) 语音识别 特征提取 心理学 人类学 精神科 社会学
作者
Guofa Li,Delin Ouyang,Yufei Yuan,Wenbo Li,Zizheng Guo,Xingda Qu,Paul Green
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 10751-10763 被引量:42
标识
DOI:10.1109/jsen.2022.3168572
摘要

As the most direct way to measure the true emotional states of humans, EEG-based emotion recognition has been widely used in affective computing applications. In this paper, we aim to propose a novel emotion recognition approach that relies on a reduced number of EEG electrode channels and at the same time overcomes the negative impact of individual differences to achieve a high recognition accuracy. According to the statistical significance results of EEG power spectral density (PSD) features obtained from the SJTU Emotion EEG Dataset (SEED), six candidate sets of EEG electrode channels are determined. An experiment-level batch normalization (BN) is proposed and applied on the features from the candidate sets, and the normalized features are then used for emotion recognition across individuals. Eleven well-accepted classifiers are used for emotion recognition. The experimental results show that the recognition accuracy when using a small portion of the available electrodes is almost the same or even better than that when using all the channels. Based on the reduced number of electrode channels, the application of experiment-level BN can help further improve the recognition accuracy, specifically from 73.33% to 89.63% when using the LR classifier. These results demonstrate that better and easier emotion recognition performance can be achieved based on the batch normalized features from fewer channels, indicating promising applications of our proposed method in real-time emotion recognition applications in intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小兔采纳,获得10
1秒前
希望天下0贩的0应助sl采纳,获得10
1秒前
3秒前
852应助磊磊采纳,获得10
3秒前
4秒前
5秒前
5秒前
知困然后能自强也完成签到,获得积分10
9秒前
10秒前
GaPb氘壬发布了新的文献求助10
10秒前
11秒前
11秒前
右旋芬氟拉明完成签到,获得积分10
11秒前
所所应助OnlyHarbour采纳,获得10
12秒前
16秒前
科研通AI6应助xc采纳,获得10
18秒前
Hello应助夏雪儿采纳,获得10
18秒前
安稳毕业实验完成签到 ,获得积分10
20秒前
20秒前
一煽情发布了新的文献求助10
20秒前
完美世界应助ZNX采纳,获得10
21秒前
23秒前
24秒前
失眠的飞荷给失眠的飞荷的求助进行了留言
27秒前
书书发布了新的文献求助10
27秒前
脑洞疼应助宇心采纳,获得30
30秒前
30秒前
西瓜完成签到 ,获得积分10
30秒前
31秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
852应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794