亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An EEG Data Processing Approach for Emotion Recognition

脑电图 情绪识别 计算机科学 规范化(社会学) 模式识别(心理学) 人工智能 情绪分类 分类器(UML) 语音识别 特征提取 心理学 人类学 精神科 社会学
作者
Guofa Li,Delin Ouyang,Yufei Yuan,Wenbo Li,Zizheng Guo,Xingda Qu,Paul Green
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 10751-10763 被引量:42
标识
DOI:10.1109/jsen.2022.3168572
摘要

As the most direct way to measure the true emotional states of humans, EEG-based emotion recognition has been widely used in affective computing applications. In this paper, we aim to propose a novel emotion recognition approach that relies on a reduced number of EEG electrode channels and at the same time overcomes the negative impact of individual differences to achieve a high recognition accuracy. According to the statistical significance results of EEG power spectral density (PSD) features obtained from the SJTU Emotion EEG Dataset (SEED), six candidate sets of EEG electrode channels are determined. An experiment-level batch normalization (BN) is proposed and applied on the features from the candidate sets, and the normalized features are then used for emotion recognition across individuals. Eleven well-accepted classifiers are used for emotion recognition. The experimental results show that the recognition accuracy when using a small portion of the available electrodes is almost the same or even better than that when using all the channels. Based on the reduced number of electrode channels, the application of experiment-level BN can help further improve the recognition accuracy, specifically from 73.33% to 89.63% when using the LR classifier. These results demonstrate that better and easier emotion recognition performance can be achieved based on the batch normalized features from fewer channels, indicating promising applications of our proposed method in real-time emotion recognition applications in intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
17秒前
25秒前
sunstar完成签到,获得积分10
29秒前
29秒前
悲凉的忆南完成签到,获得积分10
33秒前
yxl完成签到,获得积分10
36秒前
钟哈哈完成签到,获得积分10
40秒前
可耐的盈完成签到,获得积分10
43秒前
绿毛水怪完成签到,获得积分10
46秒前
lsc完成签到,获得积分10
50秒前
53秒前
小fei完成签到,获得积分10
53秒前
麻辣薯条完成签到,获得积分10
57秒前
1分钟前
时尚身影完成签到,获得积分10
1分钟前
流苏完成签到,获得积分10
1分钟前
研友_ZAxxjn发布了新的文献求助20
1分钟前
流苏2完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
wangjun完成签到,获得积分10
1分钟前
1分钟前
Aroojshams完成签到,获得积分10
1分钟前
友好的巧凡完成签到,获得积分10
1分钟前
刘瑞吉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
WANWAN发布了新的文献求助10
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
土壤情缘发布了新的文献求助10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
WANWAN完成签到,获得积分20
1分钟前
土壤情缘完成签到,获得积分10
1分钟前
1分钟前
阿芜完成签到,获得积分10
1分钟前
榴莲牛奶瓶应助阿芜采纳,获得10
2分钟前
科研通AI6应助yzzzz采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
Amelia完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418313
求助须知:如何正确求助?哪些是违规求助? 4534003
关于积分的说明 14142967
捐赠科研通 4450296
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432891
关于科研通互助平台的介绍 1410244