Recognition of rolling bearing running state based on genetic algorithm and convolutional neural network

超参数 卷积神经网络 遗传算法 计算机科学 染色体 适应度函数 人工智能 渡线 模式识别(心理学) 超参数优化 算法
作者
Wanjie Lu,Hongpeng Mao,Fanhao Lin,Zilin Chen,Hua Fu,Yaosong Xu
出处
期刊:Advances in Mechanical Engineering [SAGE Publishing]
卷期号:14 (4): 168781322210956-168781322210956
标识
DOI:10.1177/16878132221095635
摘要

In this study, the GA-CNN model is proposed to realize the automatic recognition of rolling bearing running state. Firstly, to avoid the over-fitting and gradient dispersion in the training process of the CNN model, the BN layer and Dropout technology are introduced into the LeNet-5 model. Secondly, to obtain the automatic selection of hyperparameters in CNN model, a method of hyperparameter selection combined with genetic algorithm (GA) is proposed. In the proposed method, each hyperparameter is encoded as a chromosome, and each hyperparameter has a mapping relationship with the corresponding gene position on the chromosome. After the process of chromosome selection, crossover and variation, the fitness value is calculated to present the superiority of the current chromosome. The chromosomes with high fitness values are more likely to be selected in the next genetic iteration, that is, the optimal hyperparameters of the CNN model are obtained. Then, vibration signals from CWRU are used for the time-frequency analysis, and the obtained time-frequency image set is used to train and test the proposed GA-CNN model, and the accuracy of the proposed model can reach 99.85% on average, and the training speed is four times faster than the model LeNet-5. Finally, the result of the experiment on the laboratory test platform The experimental results confirm the superiority of the method and the transplantability of the optimization model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心谷秋完成签到,获得积分10
刚刚
椰汁糕发布了新的文献求助10
1秒前
1秒前
小啊刘呀发布了新的文献求助10
1秒前
woobinhua完成签到,获得积分10
1秒前
ting1007发布了新的文献求助10
1秒前
由天与完成签到,获得积分10
2秒前
偷喝汽水发布了新的文献求助10
2秒前
玄辰完成签到,获得积分10
2秒前
美好向彤完成签到,获得积分10
2秒前
活力的友安完成签到,获得积分20
3秒前
花痴的电灯泡完成签到,获得积分10
3秒前
萧水白应助109采纳,获得10
3秒前
tetrakis完成签到,获得积分10
3秒前
所所应助大可采纳,获得10
4秒前
乌漆嘛黑完成签到,获得积分10
4秒前
QIU关闭了QIU文献求助
4秒前
Scidog完成签到,获得积分0
5秒前
Akim应助秀丽绿真采纳,获得10
5秒前
挥发的费洛蒙完成签到,获得积分10
5秒前
可爱的函函应助巴山郎采纳,获得10
6秒前
Himanny完成签到,获得积分10
6秒前
左眼天堂完成签到,获得积分10
7秒前
Ammr完成签到 ,获得积分10
7秒前
珂儿完成签到,获得积分10
7秒前
8秒前
haoyunlai完成签到,获得积分10
8秒前
nn发布了新的文献求助10
8秒前
记录者完成签到,获得积分10
8秒前
大大大大管子完成签到 ,获得积分10
9秒前
9秒前
libiqing77完成签到,获得积分10
9秒前
10秒前
皮PP完成签到,获得积分10
11秒前
Coraline应助Liyf采纳,获得20
11秒前
宁灭龙发布了新的文献求助20
11秒前
苹果从菡发布了新的文献求助10
12秒前
Jiro完成签到,获得积分10
12秒前
大可完成签到,获得积分10
12秒前
芝麻糊完成签到,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960314
求助须知:如何正确求助?哪些是违规求助? 3506417
关于积分的说明 11130144
捐赠科研通 3238582
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871941
科研通“疑难数据库(出版商)”最低求助积分说明 803099