Recognition of rolling bearing running state based on genetic algorithm and convolutional neural network

超参数 卷积神经网络 遗传算法 计算机科学 染色体 适应度函数 人工智能 渡线 模式识别(心理学) 超参数优化 算法
作者
Wanjie Lu,Hongpeng Mao,Fanhao Lin,Zilin Chen,Hua Fu,Yaosong Xu
出处
期刊:Advances in Mechanical Engineering [SAGE]
卷期号:14 (4): 168781322210956-168781322210956
标识
DOI:10.1177/16878132221095635
摘要

In this study, the GA-CNN model is proposed to realize the automatic recognition of rolling bearing running state. Firstly, to avoid the over-fitting and gradient dispersion in the training process of the CNN model, the BN layer and Dropout technology are introduced into the LeNet-5 model. Secondly, to obtain the automatic selection of hyperparameters in CNN model, a method of hyperparameter selection combined with genetic algorithm (GA) is proposed. In the proposed method, each hyperparameter is encoded as a chromosome, and each hyperparameter has a mapping relationship with the corresponding gene position on the chromosome. After the process of chromosome selection, crossover and variation, the fitness value is calculated to present the superiority of the current chromosome. The chromosomes with high fitness values are more likely to be selected in the next genetic iteration, that is, the optimal hyperparameters of the CNN model are obtained. Then, vibration signals from CWRU are used for the time-frequency analysis, and the obtained time-frequency image set is used to train and test the proposed GA-CNN model, and the accuracy of the proposed model can reach 99.85% on average, and the training speed is four times faster than the model LeNet-5. Finally, the result of the experiment on the laboratory test platform The experimental results confirm the superiority of the method and the transplantability of the optimization model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助西瓜采纳,获得10
1秒前
1秒前
细心笑卉完成签到 ,获得积分10
1秒前
yan123发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
tu完成签到,获得积分10
3秒前
yn发布了新的文献求助10
5秒前
小丁发布了新的文献求助10
5秒前
英格兰胖头鱼完成签到 ,获得积分10
5秒前
6秒前
明明完成签到,获得积分20
7秒前
oligo发布了新的文献求助10
7秒前
烟花应助JIEJIEJIE采纳,获得10
8秒前
fool发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
天天快乐应助yan123采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
心如止水发布了新的文献求助50
13秒前
13秒前
Jasper应助沉默采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
JackFan完成签到,获得积分10
14秒前
dancingidam完成签到,获得积分10
14秒前
14秒前
15秒前
小冉给小冉的求助进行了留言
16秒前
嘿嘿发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507123
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481925
捐赠科研通 4536520
什么是DOI,文献DOI怎么找? 2486226
邀请新用户注册赠送积分活动 1468816
关于科研通互助平台的介绍 1441292