亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design

材料科学 热膨胀 阳极 复合材料 分层(地质) 旋节 应变能密度函数 压力(语言学) 电池(电) 冯·米塞斯屈服准则 锂离子电池 结构工程 电极 光电子学 有限元法 热力学 化学 相(物质) 物理 工程类 哲学 物理化学 古生物学 构造学 俯冲 功率(物理) 有机化学 语言学 生物
作者
Sierra J. Gross,Meng-Ting Hsieh,Daniel R. Mumm,Lorenzo Valdevit,Ali Mohraz
出处
期刊:Extreme Mechanics Letters [Elsevier BV]
卷期号:54: 101746-101746 被引量:16
标识
DOI:10.1016/j.eml.2022.101746
摘要

The mechanics of films undergoing volume expansion on curved substrates plays a key role in a variety of technologies including biomedical implants, thermal and environmental barrier coatings, and electrochemical energy storage systems. Silicon anodes for lithium-ion batteries are an especially challenging case because they can undergo volume variations up to 300% that results in cracking, delamination, and thus significant loss in performance. In this study, we use finite element analysis to model the volume expansion during lithiation for silicon coated on spinodal, inverse opal, gyroid, and Schwartz primitive nickel backbones and compare the distributions of maximum principal stress, strain energy density, and von Mises stress, which we use as indicators for propensity for cracking, delamination, and yielding, in order to explore the effect of backbone morphology on mechanical degradation during expansion. We show that, when compared to the inverse opal, the spinodal morphology reduces and uniformly distributes the maximum principal stress and strain energy density in the silicon layer, and delays the onset of expansion-induced yielding at all silicon layer thicknesses, which we ascribe to the unique interfacial curvature distribution of spinodal structures. This work highlights the importance of morphology on coatings undergoing volume variations and unveils the particular promise of spinodally derived materials for the design of next generation lithium-ion battery electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙孙应助Jim采纳,获得30
13秒前
充电宝应助EliotFang采纳,获得10
39秒前
49秒前
陈杰发布了新的文献求助10
55秒前
kuoping完成签到,获得积分0
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
nickel完成签到,获得积分10
2分钟前
2分钟前
EliotFang发布了新的文献求助10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
Frank发布了新的文献求助10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
EliotFang完成签到,获得积分10
3分钟前
fsznc完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
开心完成签到 ,获得积分10
5分钟前
5分钟前
顾矜应助zsc采纳,获得10
5分钟前
榆果子发布了新的文献求助10
5分钟前
榆果子完成签到,获得积分10
6分钟前
我是笨蛋完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
荆棘鸟发布了新的文献求助10
6分钟前
正传阿飞完成签到,获得积分10
7分钟前
隐形曼青应助荆棘鸟采纳,获得10
7分钟前
荆棘鸟完成签到,获得积分10
7分钟前
7分钟前
Frank完成签到,获得积分10
7分钟前
鲤鱼听荷完成签到 ,获得积分10
8分钟前
8分钟前
tabblk发布了新的文献求助10
9分钟前
赘婿应助科研通管家采纳,获得10
9分钟前
QCB完成签到 ,获得积分10
9分钟前
陈杰发布了新的文献求助10
9分钟前
宋艳芳完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976