亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design

材料科学 热膨胀 阳极 复合材料 分层(地质) 旋节 应变能密度函数 压力(语言学) 电池(电) 冯·米塞斯屈服准则 锂离子电池 结构工程 电极 光电子学 有限元法 热力学 化学 相(物质) 物理 工程类 哲学 物理化学 古生物学 构造学 俯冲 功率(物理) 有机化学 语言学 生物
作者
Sierra J. Gross,Meng-Ting Hsieh,Daniel R. Mumm,Lorenzo Valdevit,Ali Mohraz
出处
期刊:Extreme Mechanics Letters [Elsevier]
卷期号:54: 101746-101746 被引量:16
标识
DOI:10.1016/j.eml.2022.101746
摘要

The mechanics of films undergoing volume expansion on curved substrates plays a key role in a variety of technologies including biomedical implants, thermal and environmental barrier coatings, and electrochemical energy storage systems. Silicon anodes for lithium-ion batteries are an especially challenging case because they can undergo volume variations up to 300% that results in cracking, delamination, and thus significant loss in performance. In this study, we use finite element analysis to model the volume expansion during lithiation for silicon coated on spinodal, inverse opal, gyroid, and Schwartz primitive nickel backbones and compare the distributions of maximum principal stress, strain energy density, and von Mises stress, which we use as indicators for propensity for cracking, delamination, and yielding, in order to explore the effect of backbone morphology on mechanical degradation during expansion. We show that, when compared to the inverse opal, the spinodal morphology reduces and uniformly distributes the maximum principal stress and strain energy density in the silicon layer, and delays the onset of expansion-induced yielding at all silicon layer thicknesses, which we ascribe to the unique interfacial curvature distribution of spinodal structures. This work highlights the importance of morphology on coatings undergoing volume variations and unveils the particular promise of spinodally derived materials for the design of next generation lithium-ion battery electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分20
7秒前
9秒前
嘻嘻哈哈完成签到,获得积分10
21秒前
48秒前
51秒前
1分钟前
apple发布了新的文献求助10
1分钟前
1分钟前
Conner完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
xxx发布了新的文献求助10
1分钟前
嵐酱布响堪论文完成签到,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
2分钟前
3分钟前
aa111发布了新的文献求助10
3分钟前
完美世界应助aa111采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
maher应助科研通管家采纳,获得30
3分钟前
ZYP应助科研通管家采纳,获得10
3分钟前
3分钟前
科研启动发布了新的文献求助30
3分钟前
3分钟前
酷波er应助yahaahaaoo采纳,获得10
4分钟前
科研启动完成签到,获得积分10
4分钟前
科研通AI6应助xxx采纳,获得10
4分钟前
自信号厂完成签到 ,获得积分0
4分钟前
领导范儿应助nikuisi采纳,获得10
4分钟前
4分钟前
wew发布了新的文献求助10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221