Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design

材料科学 热膨胀 阳极 复合材料 分层(地质) 旋节 应变能密度函数 压力(语言学) 电池(电) 冯·米塞斯屈服准则 锂离子电池 结构工程 电极 光电子学 有限元法 热力学 化学 相(物质) 物理 工程类 哲学 物理化学 古生物学 构造学 俯冲 功率(物理) 有机化学 语言学 生物
作者
Sierra J. Gross,Meng-Ting Hsieh,Daniel R. Mumm,Lorenzo Valdevit,Ali Mohraz
出处
期刊:Extreme Mechanics Letters [Elsevier]
卷期号:54: 101746-101746 被引量:16
标识
DOI:10.1016/j.eml.2022.101746
摘要

The mechanics of films undergoing volume expansion on curved substrates plays a key role in a variety of technologies including biomedical implants, thermal and environmental barrier coatings, and electrochemical energy storage systems. Silicon anodes for lithium-ion batteries are an especially challenging case because they can undergo volume variations up to 300% that results in cracking, delamination, and thus significant loss in performance. In this study, we use finite element analysis to model the volume expansion during lithiation for silicon coated on spinodal, inverse opal, gyroid, and Schwartz primitive nickel backbones and compare the distributions of maximum principal stress, strain energy density, and von Mises stress, which we use as indicators for propensity for cracking, delamination, and yielding, in order to explore the effect of backbone morphology on mechanical degradation during expansion. We show that, when compared to the inverse opal, the spinodal morphology reduces and uniformly distributes the maximum principal stress and strain energy density in the silicon layer, and delays the onset of expansion-induced yielding at all silicon layer thicknesses, which we ascribe to the unique interfacial curvature distribution of spinodal structures. This work highlights the importance of morphology on coatings undergoing volume variations and unveils the particular promise of spinodally derived materials for the design of next generation lithium-ion battery electrodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
usdivff完成签到,获得积分10
1秒前
2秒前
李四发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
rafaam发布了新的文献求助10
4秒前
cxw完成签到,获得积分10
4秒前
NexusExplorer应助河神采纳,获得10
4秒前
Mic应助morena采纳,获得10
4秒前
4秒前
5秒前
謃河鷺起完成签到,获得积分10
5秒前
shinble发布了新的文献求助10
5秒前
6秒前
usdivff发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
夏冰雹完成签到 ,获得积分10
7秒前
大模型应助LL爱读书采纳,获得10
7秒前
Lucas应助pero采纳,获得10
7秒前
8秒前
吮指原味鸡完成签到,获得积分20
8秒前
8秒前
violet发布了新的文献求助10
9秒前
杨涵发布了新的文献求助10
9秒前
9秒前
WUHUIWEN完成签到,获得积分10
9秒前
慕青应助香蕉傲菡采纳,获得30
10秒前
皮咻完成签到,获得积分10
10秒前
和光同尘完成签到,获得积分10
10秒前
11秒前
慕青应助zw采纳,获得10
12秒前
hh发布了新的文献求助10
12秒前
大圈圈发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715