纳米棒
生物传感器
材料科学
共价键
光化学
电子转移
检出限
化学
化学工程
纳米技术
有机化学
色谱法
工程类
作者
Yulin Zheng,Yunlei Zhou,Xiaoting Cui,Huanshun Yin,Shiyun Ai
标识
DOI:10.1016/j.mtchem.2022.100878
摘要
The photoactivity of CdS nanorods was greatly improved by amino functionalized accordion-like MXene and spherical ZnSnO3. MXene possesses good electron transfer capability and ZnSnO3 presents matched energy band with CdS, which deeply accelerate the electron transfer and prevent the recombination of photogenerated electron-hole pair, leading to a strong photoelectrochemical (PEC) response. Taking the merit of the improved photoactivity of CdS nanorods, a novel PEC biosensor was constructed for DNA hydromethylation detection based on immune recognition of target molecule, where 5-hydroxymethyl-2′-deoxycytidine triphosphate (5hmdCTP) was employed as detect target, CdS/MXene was used as photoactive material, and ZnSnO3 was adopted as signal amplification unit. Under enzymatic covalent reaction of –CH2OH of 5hmdCTP with –NH2 of MXene, 5hmdCTP was specifically recognized and captured. Then, taking advantages of the covalent reaction between phosphate group of 5hmdCTP and ZnSnO3, the signal amplification unit was captured. Under the optimum conditions, this PEC biosensor presents wide linear range of 0.008–100 nM and low detection limit of 4.21 pM (3σ). The applicability of the developed method was evaluated by investigating the effect of Cd2+ and perfluorohexane compound pollutant on 5-hydroxymethylcytosine content in the genomic DNA of the roots and leaves of wheat seedlings.
科研通智能强力驱动
Strongly Powered by AbleSci AI