Automated food safety early warning system in the dairy supply chain using machine learning

预警系统 食品安全 业务 预警系统 供应链 食物链 计算机科学 风险分析(工程) 食品科学 化学 营销 生物 电信 古生物学
作者
Ningjing Liu,Yamine Bouzembrak,Leonieke M. van den Bulk,Anand Gavai,Lukas J. van den Heuvel,H.J.P. Marvin
出处
期刊:Food Control [Elsevier]
卷期号:136: 108872-108872 被引量:27
标识
DOI:10.1016/j.foodcont.2022.108872
摘要

Traditionally, early warning systems for food safety are based on monitoring targeted food safety hazards. Optimal early warning systems, however, should identify signals that precede the development of a food safety risk. Moreover, such signals could be identified in factors from domains adjacent to the food supply chain, so-called drivers of change and other indicators. In this study, we show for the first time that such drivers and indicators may indeed represent signals that precede the detection of a food safety risk. The dairy supply chain in Europe was used as an application case. Using dynamic unsupervised anomaly detection models, anomalies were detected in indicator data expected by domain experts to impact the development of food safety risks in milk. Additionally, a Bayesian network was used to identify the chemical food safety hazards in milk associated with an anomaly for the Netherlands. The results showed that the frequency of anomalies varied per country and indicator. However, all countries showed in the period investigated (2008–2019), anomalies in the indicators "raw milk price" and "barely milk price" and no anomalies in the indicator" income of dairy farms". A cross-correlation analysis of the number of Rapid Alert for Food and Feed (RASFF) notifications and anomalies in indicators revealed significant correlations of many indicators but difference between countries was observed. Interesting, for all countries the cross corelation with indicator "milk price" was significant, albeit the lag time varied from 5 months (United Kingdom) to 22 months (Italy). This finding suggests that severe changes in domains adjacent to the food supply chain may trigger the development of food safety problems that become visible many months later. Awareness of such relationships will provide the opportunity for food producers or inspectors to take timely measures to prevent food safety problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
勤奋幻柏完成签到,获得积分10
5秒前
5秒前
6秒前
我是老大应助哈哈嗝采纳,获得10
7秒前
研友_Z7QbzL发布了新的文献求助10
7秒前
L-g-b发布了新的文献求助10
7秒前
今日甜分超标完成签到 ,获得积分10
7秒前
石越发布了新的文献求助10
10秒前
胖胖完成签到 ,获得积分0
11秒前
11秒前
飞飞飞完成签到,获得积分10
14秒前
15秒前
liyao90911发布了新的文献求助10
15秒前
LZJ完成签到 ,获得积分10
16秒前
重要的水杯完成签到,获得积分10
16秒前
王q完成签到,获得积分10
17秒前
17秒前
19秒前
每念至此完成签到,获得积分10
19秒前
温暖的定格完成签到,获得积分10
21秒前
山神厘子完成签到,获得积分10
22秒前
四喜丸子发布了新的文献求助10
22秒前
深情安青应助L-g-b采纳,获得10
23秒前
23秒前
专一的平卉完成签到,获得积分10
23秒前
哈哈嗝发布了新的文献求助10
23秒前
mcsmdxs发布了新的文献求助10
25秒前
liyao90911完成签到,获得积分10
27秒前
fifteen应助如水采纳,获得10
27秒前
Shelley发布了新的文献求助10
28秒前
芋泥面包完成签到,获得积分10
30秒前
31秒前
Michael完成签到,获得积分10
33秒前
fff完成签到,获得积分10
33秒前
化学发布了新的文献求助10
35秒前
and999完成签到,获得积分10
37秒前
38秒前
林夕完成签到,获得积分10
39秒前
一行白鹭上青天关注了科研通微信公众号
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342105
求助须知:如何正确求助?哪些是违规求助? 2969338
关于积分的说明 8638821
捐赠科研通 2649110
什么是DOI,文献DOI怎么找? 1450575
科研通“疑难数据库(出版商)”最低求助积分说明 671938
邀请新用户注册赠送积分活动 661098