Automated food safety early warning system in the dairy supply chain using machine learning

预警系统 食品安全 业务 预警系统 供应链 食物链 计算机科学 风险分析(工程) 食品科学 化学 营销 生物 电信 古生物学
作者
Ningjing Liu,Yamine Bouzembrak,Leonieke M. van den Bulk,Anand Gavai,Lukas J. van den Heuvel,H.J.P. Marvin
出处
期刊:Food Control [Elsevier BV]
卷期号:136: 108872-108872 被引量:27
标识
DOI:10.1016/j.foodcont.2022.108872
摘要

Traditionally, early warning systems for food safety are based on monitoring targeted food safety hazards. Optimal early warning systems, however, should identify signals that precede the development of a food safety risk. Moreover, such signals could be identified in factors from domains adjacent to the food supply chain, so-called drivers of change and other indicators. In this study, we show for the first time that such drivers and indicators may indeed represent signals that precede the detection of a food safety risk. The dairy supply chain in Europe was used as an application case. Using dynamic unsupervised anomaly detection models, anomalies were detected in indicator data expected by domain experts to impact the development of food safety risks in milk. Additionally, a Bayesian network was used to identify the chemical food safety hazards in milk associated with an anomaly for the Netherlands. The results showed that the frequency of anomalies varied per country and indicator. However, all countries showed in the period investigated (2008–2019), anomalies in the indicators "raw milk price" and "barely milk price" and no anomalies in the indicator" income of dairy farms". A cross-correlation analysis of the number of Rapid Alert for Food and Feed (RASFF) notifications and anomalies in indicators revealed significant correlations of many indicators but difference between countries was observed. Interesting, for all countries the cross corelation with indicator "milk price" was significant, albeit the lag time varied from 5 months (United Kingdom) to 22 months (Italy). This finding suggests that severe changes in domains adjacent to the food supply chain may trigger the development of food safety problems that become visible many months later. Awareness of such relationships will provide the opportunity for food producers or inspectors to take timely measures to prevent food safety problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxz发布了新的文献求助10
1秒前
2秒前
田様应助实验狗采纳,获得10
2秒前
大模型应助HCT采纳,获得10
2秒前
2秒前
陈文学完成签到,获得积分10
2秒前
3秒前
Zhuzhu完成签到 ,获得积分10
4秒前
4秒前
CR7应助清脆又晴采纳,获得20
5秒前
快乐的发布了新的文献求助10
5秒前
6秒前
6秒前
顽固的肉完成签到,获得积分10
7秒前
zhuzhu发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助彭佳乐采纳,获得10
9秒前
9秒前
小马甲应助哈哈哈哈哈采纳,获得10
9秒前
kuhei完成签到,获得积分10
9秒前
陈文学发布了新的文献求助10
10秒前
念暖完成签到 ,获得积分10
10秒前
NexusExplorer应助唐_采纳,获得10
10秒前
dypdyp应助H28G采纳,获得10
11秒前
11发布了新的文献求助20
11秒前
叶子发布了新的文献求助10
11秒前
mlm完成签到,获得积分10
12秒前
12秒前
魔术师完成签到,获得积分10
13秒前
STH完成签到 ,获得积分10
13秒前
实验狗发布了新的文献求助10
13秒前
kuhei发布了新的文献求助10
14秒前
14秒前
彭佳乐完成签到,获得积分10
15秒前
yulongli完成签到,获得积分10
15秒前
16秒前
May应助张雯雯采纳,获得20
16秒前
16秒前
16秒前
sophiemore发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371