Automated food safety early warning system in the dairy supply chain using machine learning

预警系统 食品安全 业务 预警系统 供应链 食物链 计算机科学 风险分析(工程) 食品科学 化学 营销 生物 电信 古生物学
作者
Ningjing Liu,Yamine Bouzembrak,Leonieke M. van den Bulk,Anand Gavai,Lukas J. van den Heuvel,H.J.P. Marvin
出处
期刊:Food Control [Elsevier BV]
卷期号:136: 108872-108872 被引量:27
标识
DOI:10.1016/j.foodcont.2022.108872
摘要

Traditionally, early warning systems for food safety are based on monitoring targeted food safety hazards. Optimal early warning systems, however, should identify signals that precede the development of a food safety risk. Moreover, such signals could be identified in factors from domains adjacent to the food supply chain, so-called drivers of change and other indicators. In this study, we show for the first time that such drivers and indicators may indeed represent signals that precede the detection of a food safety risk. The dairy supply chain in Europe was used as an application case. Using dynamic unsupervised anomaly detection models, anomalies were detected in indicator data expected by domain experts to impact the development of food safety risks in milk. Additionally, a Bayesian network was used to identify the chemical food safety hazards in milk associated with an anomaly for the Netherlands. The results showed that the frequency of anomalies varied per country and indicator. However, all countries showed in the period investigated (2008–2019), anomalies in the indicators "raw milk price" and "barely milk price" and no anomalies in the indicator" income of dairy farms". A cross-correlation analysis of the number of Rapid Alert for Food and Feed (RASFF) notifications and anomalies in indicators revealed significant correlations of many indicators but difference between countries was observed. Interesting, for all countries the cross corelation with indicator "milk price" was significant, albeit the lag time varied from 5 months (United Kingdom) to 22 months (Italy). This finding suggests that severe changes in domains adjacent to the food supply chain may trigger the development of food safety problems that become visible many months later. Awareness of such relationships will provide the opportunity for food producers or inspectors to take timely measures to prevent food safety problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
史雅怡完成签到,获得积分10
刚刚
打打应助Dr_思念采纳,获得10
1秒前
科研战士发布了新的文献求助10
1秒前
科研通AI6应助达芬骑驴采纳,获得10
1秒前
丘比特应助杨雪妮采纳,获得10
1秒前
626发布了新的文献求助10
1秒前
1秒前
山月完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
大碗完成签到,获得积分10
3秒前
kuankuan发布了新的文献求助10
3秒前
潘潘完成签到,获得积分10
3秒前
3秒前
顺心书琴发布了新的文献求助10
3秒前
4秒前
4秒前
邵钰博完成签到,获得积分10
5秒前
可爱的函函应助rudjs采纳,获得10
5秒前
zhongying发布了新的文献求助10
5秒前
喵喵丸子关注了科研通微信公众号
5秒前
小马甲应助ning采纳,获得10
5秒前
6秒前
李佳会完成签到,获得积分10
6秒前
6秒前
LL发布了新的文献求助10
6秒前
kaikai晴完成签到,获得积分10
7秒前
我是老大应助wlx采纳,获得10
7秒前
Hamm发布了新的文献求助90
7秒前
脂肪肝完成签到,获得积分10
7秒前
淡然善斓发布了新的文献求助10
8秒前
明亮元菱完成签到,获得积分10
8秒前
8秒前
5High_0发布了新的文献求助10
8秒前
充电宝应助小米采纳,获得10
8秒前
麦可发布了新的文献求助100
8秒前
www完成签到,获得积分20
9秒前
机智猴完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035