Dungeons & Replicants II: Automated Game Balancing Across Multiple Difficulty Dimensions via Deep Player Behavior Modeling

对手 计算机科学 启发式 电子游戏 人工智能 生成语法 生成模型 计算机安全 多媒体
作者
Johannes Pfau,Antonios Liapis,Georgios N. Yannakakis,Rainer Malaka
出处
期刊:IEEE transactions on games [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 217-227 被引量:8
标识
DOI:10.1109/tg.2022.3167728
摘要

Video game testing has become a major investment of time, labor, and expense in the game industry. Particularly the balancing of in-game units, characters, and classes can cause long-lasting issues that persist years after a game's launch. While approaches incorporating artificial intelligence have already shown successes in reducing manual effort and enhancing game development processes, most of these draw on heuristic, generalized, or optimal behavior routines, while actual low-level decisions from individual players and their resulting playing styles are rarely considered. In this article, we apply deep player behavior modeling to turn atomic actions of 213 players from six months of single-player instances within the MMORPG Aion into generative models that capture and reproduce particular playing strategies. In a subsequent simulation, the resulting generative agents ("replicants") were tested against common NPC opponent types of MMORPGs that iteratively increased in difficulty, respective to the primary factor that constitutes this enemy type (Melee, Ranged, Rogue, Buffer, Debuffer, Healer, Tank, or Group). As a result, imbalances between classes as well as strengths and weaknesses regarding particular combat challenges could be identified and regulated automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研顺利关注了科研通微信公众号
刚刚
刚刚
sen123完成签到 ,获得积分10
2秒前
受伤寻梅发布了新的文献求助10
3秒前
妮儿发布了新的文献求助10
3秒前
哆啦A梦的小小王完成签到,获得积分10
5秒前
ming完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
10秒前
evilhag发布了新的文献求助10
10秒前
搞怪烨伟发布了新的文献求助10
10秒前
月光颂博客完成签到 ,获得积分10
11秒前
cz完成签到,获得积分10
11秒前
酷波er应助Metakuro采纳,获得10
12秒前
荔枝完成签到,获得积分10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
一石二鸟应助科研通管家采纳,获得10
12秒前
自信的子默完成签到,获得积分20
12秒前
打打应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
卓博完成签到,获得积分10
12秒前
华仔应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
朴实天寿应助科研通管家采纳,获得20
13秒前
过时的朝雪完成签到,获得积分20
13秒前
13秒前
雷雷发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
15秒前
16秒前
16秒前
VD完成签到,获得积分10
17秒前
Lily发布了新的文献求助10
17秒前
吴兰田完成签到,获得积分10
18秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046