Multiview Deep Graph Infomax to Achieve Unsupervised Graph Embedding.

最大熵 判别式 计算机科学 图形 人工智能 嵌入 模式识别(心理学) 图嵌入 理论计算机科学
作者
Zhichao Zhou,Yu Hu,Yue Zhang,Jiazhou Chen,Hongmin Cai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163721
摘要

Unsupervised graph embedding aims to extract highly discriminative node representations that facilitate the subsequent analysis. Converging evidence shows that a multiview graph provides a more comprehensive relationship between nodes than a single-view graph to capture the intrinsic topology. However, little attention has been paid to excavating discriminative representations of each node from multiview heterogeneous networks in an unsupervised manner. To that end, we propose a novel unsupervised multiview graph embedding method, called multiview deep graph infomax (MVDGI). The backbone of our proposed model sought to maximize the mutual information between the view-dependent node representations and the fused unified representation via contrastive learning. Specifically, the MVDGI first uses an encoder to extract view-dependent node representations from each single-view graph. Next, an aggregator is applied to fuse the view-dependent node representations into the view-independent node representations. Finally, a discriminator is adopted to extract highly discriminative representations via contrastive learning. Extensive experiments demonstrate that the MVDGI achieves better performance than the benchmark methods on five real-world datasets, indicating that the obtained node representations by our proposed approach are more discriminative than by its competitors for classification and clustering tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
penglinhua完成签到,获得积分10
刚刚
英姑应助火星上香菇采纳,获得10
刚刚
852应助asdfg123采纳,获得10
1秒前
英俊的铭应助可可期采纳,获得10
1秒前
元白完成签到,获得积分10
2秒前
2秒前
2秒前
科研顺发布了新的文献求助30
3秒前
3秒前
CMUSK发布了新的文献求助30
3秒前
赘婿应助w。采纳,获得10
3秒前
cooper发布了新的文献求助10
4秒前
penglinhua发布了新的文献求助10
4秒前
CipherSage应助繁星长明采纳,获得10
4秒前
默默幼南发布了新的文献求助10
4秒前
烟花应助张启帆采纳,获得10
5秒前
5秒前
夏依瑶发布了新的文献求助10
5秒前
5秒前
我是老大应助韩嘉琦采纳,获得10
6秒前
6秒前
qw完成签到,获得积分10
6秒前
7秒前
槐序二三发布了新的文献求助10
7秒前
7秒前
搜集达人应助wx采纳,获得10
7秒前
8秒前
8秒前
可乐鸡翅完成签到,获得积分10
8秒前
Shilly完成签到,获得积分10
9秒前
现实的菠萝完成签到,获得积分20
9秒前
qw发布了新的文献求助10
9秒前
xingcheng完成签到,获得积分10
10秒前
胡图图发布了新的文献求助10
10秒前
liuz53发布了新的文献求助10
10秒前
luoshi94完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407