Multiview Deep Graph Infomax to Achieve Unsupervised Graph Embedding.

最大熵 判别式 计算机科学 图形 人工智能 嵌入 模式识别(心理学) 图嵌入 理论计算机科学
作者
Zhichao Zhou,Yu Hu,Yue Zhang,Jiazhou Chen,Hongmin Cai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163721
摘要

Unsupervised graph embedding aims to extract highly discriminative node representations that facilitate the subsequent analysis. Converging evidence shows that a multiview graph provides a more comprehensive relationship between nodes than a single-view graph to capture the intrinsic topology. However, little attention has been paid to excavating discriminative representations of each node from multiview heterogeneous networks in an unsupervised manner. To that end, we propose a novel unsupervised multiview graph embedding method, called multiview deep graph infomax (MVDGI). The backbone of our proposed model sought to maximize the mutual information between the view-dependent node representations and the fused unified representation via contrastive learning. Specifically, the MVDGI first uses an encoder to extract view-dependent node representations from each single-view graph. Next, an aggregator is applied to fuse the view-dependent node representations into the view-independent node representations. Finally, a discriminator is adopted to extract highly discriminative representations via contrastive learning. Extensive experiments demonstrate that the MVDGI achieves better performance than the benchmark methods on five real-world datasets, indicating that the obtained node representations by our proposed approach are more discriminative than by its competitors for classification and clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒月如雪发布了新的文献求助10
3秒前
啦啦啦啦发布了新的文献求助10
3秒前
4秒前
niuade完成签到,获得积分10
4秒前
科目三应助摆渡人采纳,获得10
4秒前
DO关注了科研通微信公众号
4秒前
JamesPei应助现代雪柳采纳,获得10
4秒前
情怀应助zong采纳,获得10
5秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
7秒前
我是老大应助曹曹采纳,获得10
8秒前
小小橙发布了新的文献求助10
9秒前
725发布了新的文献求助10
10秒前
hhh完成签到,获得积分10
10秒前
酷波er应助啦啦啦采纳,获得10
11秒前
行云流水完成签到,获得积分10
11秒前
12秒前
123完成签到,获得积分20
12秒前
搜集达人应助宫冷雁采纳,获得10
12秒前
文献互助发布了新的文献求助50
13秒前
共享精神应助wjw采纳,获得10
13秒前
香蕉觅云应助沉默的羔手采纳,获得10
13秒前
57完成签到,获得积分10
13秒前
bhc186发布了新的文献求助10
13秒前
柒月完成签到,获得积分10
13秒前
雷雷雷完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
啦啦啦啦完成签到,获得积分10
17秒前
zongzong完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
传奇3应助hj采纳,获得10
19秒前
zong完成签到,获得积分10
19秒前
王树茂完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153139
求助须知:如何正确求助?哪些是违规求助? 2804306
关于积分的说明 7858717
捐赠科研通 2462115
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629333
版权声明 601794