Multiview Deep Graph Infomax to Achieve Unsupervised Graph Embedding.

最大熵 判别式 计算机科学 图形 人工智能 嵌入 模式识别(心理学) 图嵌入 理论计算机科学
作者
Zhichao Zhou,Yu Hu,Yue Zhang,Jiazhou Chen,Hongmin Cai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcyb.2022.3163721
摘要

Unsupervised graph embedding aims to extract highly discriminative node representations that facilitate the subsequent analysis. Converging evidence shows that a multiview graph provides a more comprehensive relationship between nodes than a single-view graph to capture the intrinsic topology. However, little attention has been paid to excavating discriminative representations of each node from multiview heterogeneous networks in an unsupervised manner. To that end, we propose a novel unsupervised multiview graph embedding method, called multiview deep graph infomax (MVDGI). The backbone of our proposed model sought to maximize the mutual information between the view-dependent node representations and the fused unified representation via contrastive learning. Specifically, the MVDGI first uses an encoder to extract view-dependent node representations from each single-view graph. Next, an aggregator is applied to fuse the view-dependent node representations into the view-independent node representations. Finally, a discriminator is adopted to extract highly discriminative representations via contrastive learning. Extensive experiments demonstrate that the MVDGI achieves better performance than the benchmark methods on five real-world datasets, indicating that the obtained node representations by our proposed approach are more discriminative than by its competitors for classification and clustering tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
刚刚
1秒前
闲听花落发布了新的文献求助10
1秒前
鲸鱼发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
科研通AI6应助qingmei采纳,获得10
2秒前
leahlin完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
海蓝云天发布了新的文献求助10
3秒前
Jasper应助魁梧的元冬采纳,获得30
3秒前
3秒前
3秒前
3秒前
NexusExplorer应助maybe采纳,获得10
3秒前
3秒前
李爱国应助Birdy采纳,获得10
3秒前
4秒前
勤奋的雅青完成签到,获得积分10
4秒前
4秒前
传奇3应助Genius采纳,获得10
4秒前
yuuui发布了新的文献求助10
5秒前
黄bb应助QQ采纳,获得10
5秒前
三七完成签到,获得积分10
5秒前
tapekit发布了新的文献求助10
6秒前
yuantao发布了新的文献求助10
6秒前
john_joestar发布了新的文献求助10
6秒前
6秒前
7秒前
ewfr发布了新的文献求助10
7秒前
7秒前
7秒前
王木木发布了新的文献求助10
7秒前
bkagyin应助刘凤莲采纳,获得10
7秒前
隐形曼青应助JING采纳,获得10
8秒前
8秒前
信wz发布了新的文献求助10
8秒前
laofe发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576925
求助须知:如何正确求助?哪些是违规求助? 4662126
关于积分的说明 14740050
捐赠科研通 4602835
什么是DOI,文献DOI怎么找? 2525962
邀请新用户注册赠送积分活动 1495839
关于科研通互助平台的介绍 1465470