已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

At the intersection of optics and deep learning: statistical inference, computing, and inverse design

深度学习 推论 巨量平行 光子学 人工神经网络 计算机科学 光学计算 可扩展性 设计空间探索 超级计算机 计算机工程 光学 人工智能 计算机体系结构 电子工程 工程类 并行计算 嵌入式系统 物理 数据库
作者
Deniz Mengü,Md Sadman Sakib Rahman,Yi Luo,Jingxi Li,Onur Kulce,Aydogan Özcan
出处
期刊:Advances in Optics and Photonics [Optica Publishing Group]
卷期号:14 (2): 209-209 被引量:46
标识
DOI:10.1364/aop.450345
摘要

Deep learning has been revolutionizing information processing in many fields of science and engineering owing to the massively growing amounts of data and the advances in deep neural network architectures. As these neural networks are expanding their capabilities toward achieving state-of-the-art solutions for demanding statistical inference tasks in various applications, there appears to be a global need for low-power, scalable, and fast computing hardware beyond what existing electronic systems can offer. Optical computing might potentially address some of these needs with its inherent parallelism, power efficiency, and high speed. Recent advances in optical materials, fabrication, and optimization techniques have significantly enriched the design capabilities in optics and photonics, leading to various successful demonstrations of guided-wave and free-space computing hardware for accelerating machine learning tasks using light. In addition to statistical inference and computing, deep learning has also fundamentally affected the field of inverse optical/photonic design. The approximation power of deep neural networks has been utilized to develop optics/photonics systems with unique capabilities, all the way from nanoantenna design to end-to-end optimization of computational imaging and sensing systems. In this review, we attempt to provide a broad overview of the current state of this emerging symbiotic relationship between deep learning and optics/photonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
青糯完成签到 ,获得积分10
2秒前
淡然完成签到 ,获得积分10
3秒前
妖九笙完成签到 ,获得积分10
3秒前
tcmlida完成签到,获得积分10
4秒前
liu_ps发布了新的文献求助10
4秒前
唐ZY123发布了新的文献求助10
4秒前
liu_ps完成签到,获得积分10
12秒前
kbcbwb2002完成签到,获得积分10
12秒前
14秒前
乐乐应助江河湖海采纳,获得10
14秒前
15秒前
核桃发布了新的文献求助10
15秒前
16秒前
daixan89完成签到 ,获得积分10
18秒前
wwwzzzxxx发布了新的文献求助10
19秒前
清鱼坊发布了新的文献求助10
19秒前
Vincent24S完成签到,获得积分10
20秒前
喜悦一曲发布了新的文献求助10
21秒前
Lucky.完成签到 ,获得积分0
21秒前
大佬们请帮助我完成签到,获得积分10
21秒前
21秒前
25秒前
26秒前
monster完成签到 ,获得积分10
27秒前
wwwzzzxxx完成签到,获得积分10
28秒前
Mireia发布了新的文献求助10
28秒前
辛勤夜柳发布了新的文献求助10
29秒前
许晴完成签到 ,获得积分10
31秒前
星辰大海应助科研通管家采纳,获得10
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
Virtual应助科研通管家采纳,获得50
33秒前
Owen应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
细胞呵呵完成签到,获得积分10
33秒前
勤奋的立果完成签到 ,获得积分10
33秒前
34秒前
Mireia完成签到,获得积分10
34秒前
菜根谭完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581232
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380864
捐赠科研通 3673734
什么是DOI,文献DOI怎么找? 2024727
邀请新用户注册赠送积分活动 1058565
科研通“疑难数据库(出版商)”最低求助积分说明 945295