Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 图形 高光谱成像 特征提取 人工神经网络 特征(语言学) 理论计算机科学 语言学 哲学
作者
Yanni Dong,Quanwei Liu,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1559-1572 被引量:288
标识
DOI:10.1109/tip.2022.3144017
摘要

Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN), such as Graph Attention Networks (GAT), are two classic neural network models, which are applied to the processing of grid data and graph data respectively. They have achieved outstanding performance in hyperspectral images (HSIs) classification field, which have attracted great interest. However, CNN has been facing the problem of small samples and GNN has to pay a huge computational cost, which restrict the performance of the two models. In this paper, we propose Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network (WFCG) for HSI classification, by using the characteristics of superpixel-based GAT and pixel-based CNN, which proved to be complementary. We first establish GAT with the help of superpixel-based encoder and decoder modules. Then we combined the attention mechanism to construct CNN. Finally, the features are weighted fusion with the characteristics of two neural network models. Rigorous experiments on three real-world HSI data sets show WFCG can fully explore the high-dimensional feature of HSI, and obtain competitive results compared to other state-of-the art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助Quentin9998采纳,获得10
刚刚
1秒前
33发布了新的文献求助10
1秒前
1秒前
4秒前
5秒前
搜集达人应助33采纳,获得10
5秒前
Alina完成签到 ,获得积分10
7秒前
奋斗清炎发布了新的文献求助10
7秒前
Atlantic发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
追寻雨发布了新的文献求助10
10秒前
xiongdi521发布了新的文献求助10
10秒前
12秒前
12秒前
xly发布了新的文献求助10
14秒前
阚曦发布了新的文献求助10
15秒前
望断椿岁发布了新的文献求助20
15秒前
16秒前
16秒前
Bear完成签到 ,获得积分10
18秒前
QF发布了新的文献求助10
19秒前
温柔寒梅完成签到 ,获得积分10
20秒前
追寻雨完成签到,获得积分10
20秒前
21秒前
WWshu应助豆豆采纳,获得10
23秒前
23秒前
共享精神应助spc采纳,获得10
23秒前
叶子完成签到,获得积分10
24秒前
核桃应助secret采纳,获得10
24秒前
等待的若云完成签到,获得积分10
25秒前
归尘发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
希捷方向发布了新的文献求助10
27秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371