Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 图形 高光谱成像 特征提取 人工神经网络 特征(语言学) 理论计算机科学 语言学 哲学
作者
Yanni Dong,Quanwei Liu,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1559-1572 被引量:288
标识
DOI:10.1109/tip.2022.3144017
摘要

Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN), such as Graph Attention Networks (GAT), are two classic neural network models, which are applied to the processing of grid data and graph data respectively. They have achieved outstanding performance in hyperspectral images (HSIs) classification field, which have attracted great interest. However, CNN has been facing the problem of small samples and GNN has to pay a huge computational cost, which restrict the performance of the two models. In this paper, we propose Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network (WFCG) for HSI classification, by using the characteristics of superpixel-based GAT and pixel-based CNN, which proved to be complementary. We first establish GAT with the help of superpixel-based encoder and decoder modules. Then we combined the attention mechanism to construct CNN. Finally, the features are weighted fusion with the characteristics of two neural network models. Rigorous experiments on three real-world HSI data sets show WFCG can fully explore the high-dimensional feature of HSI, and obtain competitive results compared to other state-of-the art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Fatalite采纳,获得30
刚刚
开心的大开完成签到 ,获得积分10
1秒前
林夕发布了新的文献求助20
1秒前
1秒前
xxk完成签到,获得积分10
2秒前
shar2发布了新的文献求助10
2秒前
hhan发布了新的文献求助30
2秒前
3秒前
常若冰完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
JamesPei应助王威采纳,获得10
4秒前
5秒前
6秒前
东方元语应助无极微光采纳,获得20
6秒前
6秒前
6秒前
6秒前
lzh发布了新的文献求助30
6秒前
汉堡包应助静香采纳,获得10
7秒前
Saintwords发布了新的文献求助50
8秒前
8秒前
www发布了新的文献求助10
8秒前
9秒前
cl完成签到,获得积分10
9秒前
9秒前
绝尘发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
超级雍完成签到,获得积分10
9秒前
Siri完成签到,获得积分10
9秒前
10秒前
清竹完成签到,获得积分10
10秒前
Tian完成签到,获得积分10
10秒前
Jasper应助CZXB采纳,获得10
11秒前
11秒前
11秒前
小二郎应助王威采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473591
求助须知:如何正确求助?哪些是违规求助? 4575682
关于积分的说明 14353923
捐赠科研通 4503208
什么是DOI,文献DOI怎么找? 2467556
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429362