In-situ monitoring of neurochemicals is of vital importance for the understanding of brain functions. Microelectrode-based photoelectrochemical (PEC) sensing has emerged as a promising tool for in vivo analysis since it inherits the merits of both optical and electrochemical methods. However, the in-situ excitation of photoactive materials on the photoelectrode in living body is still a challenge because of limited tissue penetration depth of light. To circumvent this problem, we herein developed an implantable optical fiber (OF)-based microelectrode for in vivo PEC analysis. The working electrode was constructed by coating Au film as conducting layer and [email protected] as photoactive material on a micron-sized OF, which was free of the limitation of light penetration in biological tissues. Further decoration of an anti-biofouling layer on the surface made the sensor robust in biosamples. It was successfully applied for monitoring Cu2+ level in three different brain regions in the rat model of cerebral ischemia/reperfusion.