亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis

材料科学 电化学 电催化剂 超级电容器 电解质 化学物理 化学工程 纳米技术 化学 电极 物理化学 工程类
作者
Shunyu Yao,Yang Jiao,Chade Lv,Yi Kong,Seeram Ramakrishna,Gang Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:623: 1111-1121 被引量:50
标识
DOI:10.1016/j.jcis.2022.04.126
摘要

NiMn-MOF@CoOOH feature with multiple lattice strains architecture and develop by NiMn-MOF induce, which possess spectacularly performance in supercapacitor and OER catalyst. Multiple lattice strains produce a large number of additional active sites, improve the electronic conductivity for rapid charge-transfer. Lattice strain engineering is desirable to accelerate the electrochemical reaction kinetics but still lacks exploration. Here, we have endowed NiMn-MOF@CoOOH with multiple strains, which were introduced by NiMn-MOF. In such hybrid material, the NiMn-MOF not only stabilizes the structure to prevent the material from breaking during the electro-oxidation phase change process but also serves as an anchor point to tightly connect Co ions. The surface of CoOOH undergoes lattice stretching and compression and builds abundant vacancies and dislocations. The multiple lattice strains enable accelerated ion conduction through tensile/compressive strain and introduce additional electrochemically active sites. Regional vacancies and dislocation can change the stoichiometric ratio of some regions, leading to local electric field distortion and electron density redistribution. Moreover, the stacked network structure of the double-layer sheet provides more electrochemical active interfaces for electrochemical reactions, which greatly reduces the ion transport distance and promotes the rapid diffusion of electrolyte ions. The as-obtained NiMn-MOF@CoOOH demonstrates a superb capacity of 1771.4 at 1 A g −1 in supercapacitors. Meanwhile, when facing the water oxidation electrocatalysis reaction, it delivers low overpotentials of 221 mV at 10 mA cm −2 in an alkaline electrolyte. This report provides a novel strategy for lattice strain engineering on advanced materials for sustainable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZJ完成签到,获得积分10
6秒前
mind42发布了新的文献求助10
6秒前
mmyhn发布了新的文献求助200
8秒前
11秒前
小师叔完成签到,获得积分10
11秒前
13秒前
xiaoyu发布了新的文献求助10
17秒前
19秒前
21秒前
孙孙应助lQ采纳,获得10
21秒前
田一点发布了新的文献求助10
24秒前
田一点完成签到,获得积分10
29秒前
wansida完成签到,获得积分10
33秒前
喜悦宫苴完成签到,获得积分10
33秒前
38秒前
40秒前
辉哥发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
45秒前
Lyl完成签到 ,获得积分10
48秒前
煜清清完成签到 ,获得积分10
54秒前
和谐山灵完成签到,获得积分20
57秒前
CodeCraft应助TIANNANXING采纳,获得10
59秒前
Akim应助辉哥采纳,获得10
59秒前
嗨是完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英俊的铭应助耷拉地啦采纳,获得10
1分钟前
yang完成签到,获得积分10
1分钟前
搜集达人应助一只小锦鲤采纳,获得10
1分钟前
情怀应助白日梦采纳,获得10
1分钟前
NeilGu完成签到,获得积分10
1分钟前
1分钟前
星期五完成签到,获得积分10
1分钟前
TIANNANXING发布了新的文献求助10
1分钟前
聪明小于完成签到 ,获得积分10
1分钟前
1分钟前
火星上誉完成签到 ,获得积分10
1分钟前
1分钟前
天天摸鱼完成签到,获得积分10
1分钟前
zhao完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613