Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis

材料科学 电化学 电催化剂 超级电容器 电解质 化学物理 化学工程 纳米技术 化学 电极 物理化学 工程类
作者
Shunyu Yao,Yang Jiao,Chade Lv,Yi Kong,Seeram Ramakrishna,Gang Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:623: 1111-1121 被引量:50
标识
DOI:10.1016/j.jcis.2022.04.126
摘要

NiMn-MOF@CoOOH feature with multiple lattice strains architecture and develop by NiMn-MOF induce, which possess spectacularly performance in supercapacitor and OER catalyst. Multiple lattice strains produce a large number of additional active sites, improve the electronic conductivity for rapid charge-transfer. Lattice strain engineering is desirable to accelerate the electrochemical reaction kinetics but still lacks exploration. Here, we have endowed NiMn-MOF@CoOOH with multiple strains, which were introduced by NiMn-MOF. In such hybrid material, the NiMn-MOF not only stabilizes the structure to prevent the material from breaking during the electro-oxidation phase change process but also serves as an anchor point to tightly connect Co ions. The surface of CoOOH undergoes lattice stretching and compression and builds abundant vacancies and dislocations. The multiple lattice strains enable accelerated ion conduction through tensile/compressive strain and introduce additional electrochemically active sites. Regional vacancies and dislocation can change the stoichiometric ratio of some regions, leading to local electric field distortion and electron density redistribution. Moreover, the stacked network structure of the double-layer sheet provides more electrochemical active interfaces for electrochemical reactions, which greatly reduces the ion transport distance and promotes the rapid diffusion of electrolyte ions. The as-obtained NiMn-MOF@CoOOH demonstrates a superb capacity of 1771.4 at 1 A g −1 in supercapacitors. Meanwhile, when facing the water oxidation electrocatalysis reaction, it delivers low overpotentials of 221 mV at 10 mA cm −2 in an alkaline electrolyte. This report provides a novel strategy for lattice strain engineering on advanced materials for sustainable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助烊烊采纳,获得10
刚刚
平平无奇打工人完成签到 ,获得积分10
3秒前
Young完成签到 ,获得积分10
4秒前
陳某完成签到,获得积分10
5秒前
赖道之发布了新的文献求助10
6秒前
一区的王完成签到 ,获得积分10
7秒前
搬砖的化学男完成签到 ,获得积分0
8秒前
满意的迎南完成签到 ,获得积分10
8秒前
wang完成签到,获得积分10
8秒前
Lynn完成签到 ,获得积分10
14秒前
踏实的无敌完成签到,获得积分10
16秒前
17秒前
星辰大海应助淡然的熊猫采纳,获得10
24秒前
piaoaxi完成签到 ,获得积分10
25秒前
mol完成签到 ,获得积分10
25秒前
26秒前
烊烊完成签到,获得积分10
29秒前
yang杨完成签到,获得积分10
29秒前
thuuu完成签到,获得积分10
31秒前
INBI发布了新的文献求助30
31秒前
Catherkk完成签到,获得积分10
31秒前
粱乘风完成签到,获得积分10
31秒前
Belinda完成签到 ,获得积分10
32秒前
AN完成签到,获得积分10
33秒前
myg123完成签到 ,获得积分10
35秒前
Seth完成签到,获得积分10
36秒前
36秒前
神勇友灵完成签到,获得积分10
36秒前
WL完成签到 ,获得积分10
40秒前
42秒前
qcl完成签到,获得积分10
46秒前
48秒前
淡然的熊猫完成签到,获得积分10
48秒前
顺心的安珊完成签到 ,获得积分10
49秒前
50秒前
vsvsgo发布了新的文献求助10
50秒前
负责的白风完成签到,获得积分10
51秒前
shy完成签到,获得积分10
52秒前
life完成签到,获得积分10
53秒前
夏姬宁静完成签到,获得积分10
54秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022