Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis

材料科学 电化学 电催化剂 超级电容器 电解质 化学物理 化学工程 纳米技术 化学 电极 物理化学 工程类
作者
Shunyu Yao,Yang Jiao,Chade Lv,Yi Kong,Seeram Ramakrishna,Gang Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:623: 1111-1121 被引量:50
标识
DOI:10.1016/j.jcis.2022.04.126
摘要

NiMn-MOF@CoOOH feature with multiple lattice strains architecture and develop by NiMn-MOF induce, which possess spectacularly performance in supercapacitor and OER catalyst. Multiple lattice strains produce a large number of additional active sites, improve the electronic conductivity for rapid charge-transfer. Lattice strain engineering is desirable to accelerate the electrochemical reaction kinetics but still lacks exploration. Here, we have endowed NiMn-MOF@CoOOH with multiple strains, which were introduced by NiMn-MOF. In such hybrid material, the NiMn-MOF not only stabilizes the structure to prevent the material from breaking during the electro-oxidation phase change process but also serves as an anchor point to tightly connect Co ions. The surface of CoOOH undergoes lattice stretching and compression and builds abundant vacancies and dislocations. The multiple lattice strains enable accelerated ion conduction through tensile/compressive strain and introduce additional electrochemically active sites. Regional vacancies and dislocation can change the stoichiometric ratio of some regions, leading to local electric field distortion and electron density redistribution. Moreover, the stacked network structure of the double-layer sheet provides more electrochemical active interfaces for electrochemical reactions, which greatly reduces the ion transport distance and promotes the rapid diffusion of electrolyte ions. The as-obtained NiMn-MOF@CoOOH demonstrates a superb capacity of 1771.4 at 1 A g −1 in supercapacitors. Meanwhile, when facing the water oxidation electrocatalysis reaction, it delivers low overpotentials of 221 mV at 10 mA cm −2 in an alkaline electrolyte. This report provides a novel strategy for lattice strain engineering on advanced materials for sustainable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
混子华完成签到,获得积分10
2秒前
大力向南完成签到,获得积分10
2秒前
荧123456发布了新的文献求助10
3秒前
ahua15s发布了新的文献求助10
3秒前
高文雅发布了新的文献求助10
3秒前
讠哈哈完成签到,获得积分20
4秒前
TomatoPan完成签到,获得积分10
4秒前
4秒前
wanci应助zzz采纳,获得10
4秒前
啥也不会发布了新的文献求助10
4秒前
5秒前
李健应助斯文明杰采纳,获得10
6秒前
淡淡书白完成签到,获得积分10
6秒前
H t发布了新的文献求助10
7秒前
7秒前
迷路猕猴桃完成签到,获得积分20
7秒前
星川发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
www关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI2S应助ahua15s采纳,获得10
8秒前
君君应助ahua15s采纳,获得10
8秒前
peanuttt完成签到,获得积分10
9秒前
9秒前
gean发布了新的文献求助10
9秒前
Joker_Guo关注了科研通微信公众号
9秒前
10秒前
peanuttt发布了新的文献求助30
11秒前
张经纬完成签到,获得积分20
12秒前
eric完成签到,获得积分10
12秒前
13秒前
李健的小迷弟应助gean采纳,获得10
13秒前
13秒前
打打应助精灵采纳,获得10
14秒前
14秒前
山260完成签到 ,获得积分10
15秒前
高文雅完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004