Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis

材料科学 电化学 电催化剂 超级电容器 化学工程 格子(音乐) 纳米技术 化学 电极 物理化学 物理 声学 工程类
作者
Shunyu Yao,Yang Jiao,Chade Lv,Yi Kong,Seeram Ramakrishna,Gang Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:623: 1111-1121 被引量:44
标识
DOI:10.1016/j.jcis.2022.04.126
摘要

NiMn-MOF@CoOOH feature with multiple lattice strains architecture and develop by NiMn-MOF induce, which possess spectacularly performance in supercapacitor and OER catalyst. Multiple lattice strains produce a large number of additional active sites, improve the electronic conductivity for rapid charge-transfer. Lattice strain engineering is desirable to accelerate the electrochemical reaction kinetics but still lacks exploration. Here, we have endowed NiMn-MOF@CoOOH with multiple strains, which were introduced by NiMn-MOF. In such hybrid material, the NiMn-MOF not only stabilizes the structure to prevent the material from breaking during the electro-oxidation phase change process but also serves as an anchor point to tightly connect Co ions. The surface of CoOOH undergoes lattice stretching and compression and builds abundant vacancies and dislocations. The multiple lattice strains enable accelerated ion conduction through tensile/compressive strain and introduce additional electrochemically active sites. Regional vacancies and dislocation can change the stoichiometric ratio of some regions, leading to local electric field distortion and electron density redistribution. Moreover, the stacked network structure of the double-layer sheet provides more electrochemical active interfaces for electrochemical reactions, which greatly reduces the ion transport distance and promotes the rapid diffusion of electrolyte ions. The as-obtained NiMn-MOF@CoOOH demonstrates a superb capacity of 1771.4 at 1 A g −1 in supercapacitors. Meanwhile, when facing the water oxidation electrocatalysis reaction, it delivers low overpotentials of 221 mV at 10 mA cm −2 in an alkaline electrolyte. This report provides a novel strategy for lattice strain engineering on advanced materials for sustainable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
合适依秋发布了新的文献求助10
2秒前
老迟到的发夹关注了科研通微信公众号
3秒前
4秒前
loser发布了新的文献求助10
4秒前
开放的紫伊完成签到,获得积分10
7秒前
深情安青应助AKACrown采纳,获得20
7秒前
6rkuttsmdt发布了新的文献求助10
7秒前
ZZZ完成签到,获得积分10
9秒前
赘婿应助嘚嘚嘚采纳,获得10
9秒前
优秀的小豆芽完成签到,获得积分10
10秒前
123完成签到,获得积分10
11秒前
12秒前
13秒前
深情安青应助kiki采纳,获得10
14秒前
轻松雨筠完成签到,获得积分10
15秒前
笑点低的碧琴完成签到,获得积分20
16秒前
17秒前
hyl123456发布了新的文献求助10
17秒前
壮壮女士完成签到,获得积分10
17秒前
大地发布了新的文献求助10
18秒前
传奇3应助爱吃汤圆的猫采纳,获得10
18秒前
自由蓉完成签到,获得积分10
18秒前
19秒前
JamesPei应助123采纳,获得10
19秒前
bkagyin应助77采纳,获得10
20秒前
20秒前
冷静的豪发布了新的文献求助10
22秒前
Moihan发布了新的文献求助10
22秒前
23秒前
23秒前
pumpkin完成签到 ,获得积分10
24秒前
yuaaaann发布了新的文献求助10
26秒前
ding发布了新的文献求助10
26秒前
嘚嘚嘚发布了新的文献求助10
28秒前
木忻发布了新的文献求助10
28秒前
ljs发布了新的文献求助10
30秒前
Akim应助冷静的豪采纳,获得10
30秒前
大地完成签到,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141042
求助须知:如何正确求助?哪些是违规求助? 2791997
关于积分的说明 7801347
捐赠科研通 2448241
什么是DOI,文献DOI怎么找? 1302480
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226