Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data

遥感 天蓬 激光雷达 环境科学 树冠 高度计 森林资源清查 仰角(弹道) 森林生态学 卫星 森林经营 地理 生态系统 农林复合经营 生态学 数学 几何学 航空航天工程 考古 生物 工程类
作者
Xiaoqiang Liu,Yanjun Su,Tianyu Hu,Qiuli Yang,Bingbing Liu,Yufei Deng,Hao Tang,Zhiyao Tang,Jingyun Fang,Qinghua Guo
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112844-112844 被引量:187
标识
DOI:10.1016/j.rse.2021.112844
摘要

Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助今天不加班采纳,获得10
1秒前
结实灭男发布了新的文献求助10
1秒前
星辰大海应助lxs159753采纳,获得10
1秒前
权秋尽发布了新的文献求助10
2秒前
Criminology34应助焦雯瑶采纳,获得10
2秒前
进步面包笑哈哈应助咻咻采纳,获得10
2秒前
蒲公英完成签到,获得积分10
2秒前
2秒前
天天快乐应助xaa采纳,获得10
3秒前
3秒前
深情安青应助zz采纳,获得10
3秒前
dd发布了新的文献求助10
3秒前
ccchao发布了新的文献求助10
4秒前
科研通AI6.1应助liuzhanyu采纳,获得10
4秒前
兴十一发布了新的文献求助10
5秒前
Owen应助DaemonUUU采纳,获得10
5秒前
7秒前
bruce完成签到,获得积分10
7秒前
菜菜发布了新的文献求助10
7秒前
wanci应助ww采纳,获得10
8秒前
8秒前
YY完成签到,获得积分10
8秒前
9秒前
今后应助认真的寒香采纳,获得10
9秒前
10秒前
机灵水池完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
seaboy3完成签到,获得积分10
14秒前
14秒前
酷波er应助呆一起采纳,获得10
14秒前
包妹完成签到,获得积分10
15秒前
666完成签到,获得积分10
15秒前
wa_wa_wa发布了新的文献求助10
16秒前
完美世界应助Cyuan采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082