Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data

遥感 天蓬 激光雷达 环境科学 树冠 高度计 森林资源清查 仰角(弹道) 森林生态学 卫星 森林经营 地理 生态系统 农林复合经营 生态学 数学 几何学 航空航天工程 考古 生物 工程类
作者
Xiaoqiang Liu,Yanjun Su,Tianyu Hu,Qiuli Yang,Bingbing Liu,Yufei Deng,Hao Tang,Zhiyao Tang,Jingyun Fang,Qinghua Guo
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112844-112844 被引量:187
标识
DOI:10.1016/j.rse.2021.112844
摘要

Spatially continuous estimates of forest canopy height at national to global scales are critical for quantifying forest carbon storage, understanding forest ecosystem processes, and developing forest management and restoration policies to mitigate global climate change. Spaceborne light detection and ranging (lidar) platforms, especially the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS), can measure forest canopy height in discrete footprints globally. Their coverage provides a promising data source for national to global-scale forest canopy height estimates. However, previous studies usually used a regression-based approach to develop spatially continuous forest canopy height distribution through the aid of optical images, which cannot take full advantage of the dense spaceborne lidar footprints and may still suffer from the saturation effect of optical images. In this study, we developed a novel neural network guided interpolation (NNGI) method to map forest canopy height by fusing GEDI, ICESat-2 ATLAS, and Sentinel-2 images. To evaluate the performance of the proposed NNGI method, we generated a 30-m forest canopy height product of China for the year 2019. More than 140 km2 drone-lidar data were collected across the country to train and validate the NNGI method. The results showed that the average forest canopy height of China is 15.90 m with a standard deviation of 5.77 m. We evaluated the interpolated forest canopy height product of China by over 1,100,000 GEDI validation footprints (R2 = 0.55, RMSE = 5.32 m), about 33 km2 drone-lidar validation data (R2 = 0.58, RMSE = 4.93 m), and over 59,000 field plot measurements (R2 = 0.60, RMSE = 4.88 m). Benefiting from the interpolation-based mapping strategy, the resulting product had almost no saturation effect in areas with tall forest canopies. The high mapping accuracy demonstrates the feasibility of the proposed NNGI method for monitoring spatially continuous forest canopy height at national to global scales by integrating multi-platform spaceborne lidar data and optical images, enabling opportunities to provide more accurate quantification of terrestrial carbon storage and better understanding of forest ecosystem processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ok完成签到,获得积分10
1秒前
辛勤的灵薇完成签到,获得积分10
1秒前
受伤白昼完成签到,获得积分10
2秒前
2秒前
hui发布了新的文献求助10
3秒前
Owen应助风笛采纳,获得10
3秒前
3秒前
浮游应助JJMM采纳,获得10
4秒前
6秒前
rek发布了新的文献求助10
6秒前
Owen应助lz采纳,获得10
6秒前
8秒前
上官若男应助等待以寒采纳,获得10
8秒前
Sweger发布了新的文献求助10
9秒前
9秒前
YDL发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
death123517完成签到,获得积分10
14秒前
ding应助滕0001采纳,获得10
15秒前
15秒前
17秒前
17秒前
18秒前
风笛发布了新的文献求助10
18秒前
19秒前
核桃发布了新的文献求助10
21秒前
chiq发布了新的文献求助10
21秒前
hahaha发布了新的文献求助10
22秒前
22秒前
务实寒天完成签到,获得积分10
23秒前
喜肥发布了新的文献求助10
23秒前
LXY171发布了新的文献求助20
23秒前
24秒前
王亚平发布了新的文献求助20
25秒前
regent完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915164
求助须知:如何正确求助?哪些是违规求助? 4189227
关于积分的说明 13010219
捐赠科研通 3958242
什么是DOI,文献DOI怎么找? 2170144
邀请新用户注册赠送积分活动 1188370
关于科研通互助平台的介绍 1096144