普氏藻
脱水
干燥
苔藓纲
生物
干燥耐受性
脂质代谢
生物化学
膜脂
极端环境
脂质微区
苔藓植物
植物
基因
膜
细菌
遗传学
突变体
作者
Yingchun Wang,Jianan Zhai,Zhenyu Qi,Wanping Liu,Jipeng Cui,Xi Zhang,Sulan Bai,Li Li,Guanghou Shui,Suxia Cui
标识
DOI:10.1016/j.jplph.2021.153590
摘要
Land colonization is a major event in plant evolution. Little is known about the evolutionary characteristics of lipids during this process. Here, we proved that Physcomitrella patens, a bryophyte that appeared in the early evolution of terrestrial plants, has short-term desiccation resistance. The maintenance of membrane integrity is related to its specific glycerolipid composition and key genes for lipid metabolism. We analyzed 414 types of lipid molecules, and found that phospholipids accounted for 61.7%, mainly PC and PI; glycolipids accounted for only 26.5%, with a special MGDG molecular map. The most abundant MDGD, that is, MGDG34:6, contained rare 15- and 19-carbon acyl chains; the level of neutral lipids was higher. This was consistent with the results observed by TEM, with fewer lamellae and obvious lipid droplets. Slight dehydration accumulated a large number of TAG molecules, and severe dehydration degraded phospholipids and caused membrane leakage, but PA and MGDG fluctuated less. The key genes of lipid metabolism, DGAT and PAP, were actively transcribed, suggesting that PA was one of the main DAG sources for TAG synthesis. This work proves that Physcomitrella patens adopts high-constitutive PC and PI similar to plant seeds, abundant TAG, and its own specific MGDG to resist extreme dehydration. This result provides a new insight into the lipid evolution of early terrestrial plants against unfavorable terrestrial environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI