Analyzing the pore structure of pervious concrete based on the deep learning framework of Mask R-CNN

分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 化学 生物化学 基因
作者
Hua Zhang,Rui Zhang,Daquan Sun,Fan Yu,Zhang Gao,Shuifa Sun,Zichang Zheng
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:318: 125987-125987 被引量:17
标识
DOI:10.1016/j.conbuildmat.2021.125987
摘要

Analyzing the pore structure and establishing the relationship between pore structure and macroscopic property are important research topics for pervious concrete. However, the current method of pore structure analysis is manual threshold segmentation, and its analysis efficiency is low and accuracy needs to be improved. The purpose of this paper is to establish an efficient and accurate method for analyzing the pore structure of pervious concrete based on deep learning. The pervious concrete CT slices were used as the dataset, and the improved Mask R-CNN algorithm was used as the model training framework to train the pore recognition model. The influence of the improved algorithm on the pore identification effect was analyzed. The effectiveness of the pore structure identification and analysis of the training model in this paper was evaluated compared to the traditional methods i.e., manual threshold segmentation and watershed algorithm. The results show that the improved algorithm shows a better convergence and more accurate in pore segmentation and identification compared to Mask R-CNN. As control groups, manual threshold segmentation is prone to under-segmentation or over-segmentation, watershed algorithm will cause over-segmentation or mis-segmentation. In contrast, the pore identification results of the model in this paper are closest to the ground truth, and there are few over-segmentation, under-segmentation or mis-segmentation. Additionally, the model also has good robustness to the brightness and contrast of the CT slices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
满意草丛完成签到,获得积分10
刚刚
CAOHOU应助wan采纳,获得10
1秒前
情怀应助搞怪的怜南采纳,获得10
1秒前
追寻冰淇淋给luca的求助进行了留言
1秒前
Han发布了新的文献求助10
2秒前
2秒前
yydragen应助albertxin采纳,获得10
2秒前
2秒前
2秒前
HFF完成签到,获得积分20
3秒前
3秒前
有点意思完成签到,获得积分10
4秒前
balabala发布了新的文献求助10
5秒前
yydragen应助唠叨的洋葱采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
千跃应助科研通管家采纳,获得10
7秒前
Orange应助烦烦采纳,获得30
7秒前
mx应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
无私的芹应助科研通管家采纳,获得10
7秒前
千跃应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得20
8秒前
千跃应助科研通管家采纳,获得10
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
千跃应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
无私的芹应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868