Analyzing the pore structure of pervious concrete based on the deep learning framework of Mask R-CNN

分割 人工智能 计算机科学 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 化学 生物化学 基因
作者
Hua Zhang,Rui Zhang,Daquan Sun,Fan Yu,Zhang Gao,Shuifa Sun,Zichang Zheng
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:318: 125987-125987 被引量:17
标识
DOI:10.1016/j.conbuildmat.2021.125987
摘要

Analyzing the pore structure and establishing the relationship between pore structure and macroscopic property are important research topics for pervious concrete. However, the current method of pore structure analysis is manual threshold segmentation, and its analysis efficiency is low and accuracy needs to be improved. The purpose of this paper is to establish an efficient and accurate method for analyzing the pore structure of pervious concrete based on deep learning. The pervious concrete CT slices were used as the dataset, and the improved Mask R-CNN algorithm was used as the model training framework to train the pore recognition model. The influence of the improved algorithm on the pore identification effect was analyzed. The effectiveness of the pore structure identification and analysis of the training model in this paper was evaluated compared to the traditional methods i.e., manual threshold segmentation and watershed algorithm. The results show that the improved algorithm shows a better convergence and more accurate in pore segmentation and identification compared to Mask R-CNN. As control groups, manual threshold segmentation is prone to under-segmentation or over-segmentation, watershed algorithm will cause over-segmentation or mis-segmentation. In contrast, the pore identification results of the model in this paper are closest to the ground truth, and there are few over-segmentation, under-segmentation or mis-segmentation. Additionally, the model also has good robustness to the brightness and contrast of the CT slices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助数星星采纳,获得10
刚刚
棒呆了咸蛋超女完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
杨利英完成签到 ,获得积分10
刚刚
7分运气完成签到,获得积分10
刚刚
Yynnn完成签到 ,获得积分10
1秒前
1秒前
3秒前
zwjhbz完成签到,获得积分10
4秒前
科研通AI6.1应助陈龙采纳,获得10
4秒前
赵儒浩发布了新的文献求助10
4秒前
5秒前
6秒前
fyukgfdyifotrf完成签到,获得积分10
6秒前
共享精神应助懒洋洋采纳,获得10
8秒前
拼死拼活完成签到,获得积分10
9秒前
林林完成签到 ,获得积分10
9秒前
hhh发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
终极007完成签到 ,获得积分10
13秒前
安宁完成签到 ,获得积分10
14秒前
清秀书兰完成签到 ,获得积分10
14秒前
彭于晏应助赵儒浩采纳,获得10
14秒前
曾俊宇完成签到 ,获得积分10
14秒前
14秒前
16秒前
zx发布了新的文献求助10
16秒前
拼死拼活发布了新的文献求助10
16秒前
17秒前
给我好好读书完成签到,获得积分10
18秒前
codwest完成签到,获得积分10
18秒前
诸青梦完成签到 ,获得积分10
19秒前
思源应助hhh采纳,获得10
19秒前
Ruby发布了新的文献求助10
21秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838