材料科学
阴极
电化学
离子
热稳定性
电压
纳米技术
高压
热的
格子(音乐)
化学工程
工程物理
电极
电气工程
物理化学
热力学
工程类
物理
化学
量子力学
声学
作者
Mihee Jeong,Chang-Kyu Lee,Soyeong Yun,Woosung Choi,Hyunyoung Park,Eunkang Lee,Jae‐Young Kim,Sung Jun Cho,Nam‐Hee Lee,Hyun‐Joon Shin,Won‐Sub Yoon
标识
DOI:10.1002/aenm.202103052
摘要
Abstract Over the past few years, considerable attention has been paid to high‐Ni layered cathode materials for high‐energy Li‐ion batteries (LIBs); however, these materials intrinsically have low thermal stability. Alternatively, the high‐voltage operation of low‐Ni materials may be one of the attractive ways to provide various options for designing advanced LIBs. Here, the structural, electrochemical, and thermal properties of LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) and LiNi 0.80 Co 0.15 Al 0.05 O 2 (NCA) are investigated by setting up the same initial discharge capacity. In the high‐voltage region, NCM523 exhibits less anisotropic lattice distortion and maintains wider Li‐ion channels than NCA. After long‐term cycling, reduced Ni ions are observed near the cracks, grain boundaries, or between the primary particles in both materials, however, the chemical states of the Ni ions in NCA are more heterogeneously distributed, and the particle pulverization and microcrack propagation are more prominent; the structural integrity and electrochemical properties of the material are degraded. Moreover, the cyclability and thermal stability of NCM523 are superior to those of NCA, despite the higher charge cut‐off voltage of the former. Therefore, the utilization of low‐Ni layered cathode materials operated at high voltage is a strategic approach to expand the design factors of advanced LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI