Application of lightning spatio-temporal localization method based on deep LSTM and interpolation

闪电(连接器) Softmax函数 插值(计算机图形学) 雷击 计算机科学 雷电探测 电场 克里金 人工神经网络 深度学习 航程(航空) 领域(数学) 人工智能 遥感 雷雨 气象学 实时计算 地质学 工程类 机器学习 数学 地理 航空航天工程 物理 功率(物理) 纯数学 运动(物理) 量子力学
作者
Riyang Bao,Zhenghao He,Zhuoyu Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:189: 110549-110549 被引量:11
标识
DOI:10.1016/j.measurement.2021.110549
摘要

Lightning is a strong discharge phenomenon that occurs in nature and poses a great threat to people’s property and life safety. The generation of lightning originates from the continuous accumulation of electric charges in clouds, and the atmospheric electric field instrument, as a measurement device reflecting the most fundamental cause of lightning generation, is used to detect the occurrence of lightning, which has been very widely used due to its low price and easy installation. However, its detection results are directionless and the detection range is limited. Therefore, this paper proposed a method for spatio-temporal localization of lightning based on deep Long Short-Term Memory (LSTM) neural network and interpolation method. The time series data of electric field detected by 30 atmospheric electric field instruments was fed into deep LSTM network for training, and the prediction results were classified into five categories according to the time period of lightning occurrence by softmax function. Furthermore, data from the networked stations were interpolated using ordinary Kriging (OK) to obtain the electric potential distribution in Guangzhou city, which was used to infer the approximate area where lightning may occur. The above two algorithms passed the accuracy test respectively. Finally, two case studies were done based on LSTM-OK. The results show that it can obtain satisfactory prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muzi发布了新的文献求助10
1秒前
2秒前
拼搏梦旋完成签到,获得积分10
5秒前
思源应助不安的紫翠采纳,获得10
6秒前
6秒前
逸晨发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
一介书生完成签到 ,获得积分10
8秒前
大大怪发布了新的文献求助10
9秒前
顾涵山发布了新的文献求助20
9秒前
9秒前
李十七完成签到,获得积分10
10秒前
10秒前
zzzkyt发布了新的文献求助10
12秒前
李十七发布了新的文献求助10
12秒前
12秒前
彭于晏应助七曜采纳,获得10
12秒前
肖雪依发布了新的文献求助10
14秒前
温暖雨灵发布了新的文献求助30
15秒前
小二郎应助逸晨采纳,获得10
15秒前
乐乐应助火柴盒采纳,获得10
16秒前
hahaha完成签到 ,获得积分10
18秒前
18秒前
可爱番茄完成签到 ,获得积分10
18秒前
19秒前
21秒前
22秒前
dhu_johnny完成签到,获得积分10
24秒前
24秒前
李十七发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
aldehyde应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176