已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study

医学 唾液 生物标志物 肺癌 代谢物 内科学 曲线下面积 置信区间 胃肠病学 病理 肿瘤科 生物化学 化学
作者
Satoshi Takamori,Shinya Ishikawa,Jun Suzuki,Hiroyuki Oizumi,Tetsuro Uchida,Shohei Ueda,Kaoru Edamatsu,Mitsuyoshi Iino,Masahiro Sugimoto
出处
期刊:Thoracic Cancer [Wiley]
卷期号:13 (3): 460-465 被引量:13
标识
DOI:10.1111/1759-7714.14282
摘要

Saliva is often used as a biomarker for the diagnosis of some oral and systematic diseases, owing to the non-invasive attribute of the fluid. In this study, we aimed to identify salivary biomarkers for distinguishing lung cancer (LC) from benign lung lesion (BLL).Unstimulated saliva samples were collected from 41 patients with LC and 21 with BLL. Salivary metabolites were comprehensively analyzed using capillary electrophoresis mass spectrometry. To differentiate between patients with LCs and BLLs, the discriminatory ability of each biomarker was assessed. Furthermore, a multiple logistic regression (MLR) model was developed for evaluating discriminatory ability of each salivary metabolite.The profiles of 10 salivary metabolites were remarkably different between the LC and BLL samples. Among them, the concentration of salivary tryptophan was significantly lower in the samples from patients with LC than in those from patients with BLL, and the area under the curve (AUC) for discriminating patients with LC from those with BLL was 0.663 (95% confidence interval [CI] = 0.516-0.810, p = 0.036). Furthermore, from the MLR model developed using these metabolites, diethanolamine, cytosine, lysine, and tyrosine, were selected using the back-selection regression method. The MLR model based on these four metabolites had a high discriminatory ability for patients with LC and those with BLL (AUC = 0.729, 95% CI = 0.598-0.861, p = 0.003).The four salivary metabolites can serve as potential non-invasive biomarkers for distinguishing LC from BLL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助h2o采纳,获得10
1秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
1秒前
李健的小迷弟应助向阳采纳,获得10
2秒前
褚幻香发布了新的文献求助10
5秒前
范范完成签到,获得积分20
6秒前
9秒前
Yusra完成签到 ,获得积分10
10秒前
不懈奋进应助LO7pM2采纳,获得30
11秒前
12秒前
蛋挞完成签到 ,获得积分10
12秒前
向阳完成签到,获得积分10
12秒前
455完成签到,获得积分10
13秒前
向阳发布了新的文献求助10
16秒前
Akim应助柚子采纳,获得10
17秒前
大模型应助PAPA采纳,获得10
18秒前
19秒前
Hello应助科研通管家采纳,获得10
20秒前
Hilda007应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
YifanWang应助科研通管家采纳,获得10
20秒前
Hilda007应助科研通管家采纳,获得10
20秒前
CCCheny应助科研通管家采纳,获得10
20秒前
YifanWang应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
21秒前
CCCheny应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
21秒前
隐形曼青应助科研通管家采纳,获得100
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得100
21秒前
Hello应助科研通管家采纳,获得10
21秒前
无极微光应助科研通管家采纳,获得20
21秒前
无极微光应助科研通管家采纳,获得20
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938