Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study

医学 唾液 生物标志物 肺癌 代谢物 内科学 曲线下面积 置信区间 胃肠病学 病理 肿瘤科 生物化学 化学
作者
Satoshi Takamori,Shinya Ishikawa,Jun Suzuki,Hiroyuki Oizumi,Tetsuro Uchida,Shohei Ueda,Kaoru Edamatsu,Mitsuyoshi Iino,Masahiro Sugimoto
出处
期刊:Thoracic Cancer [Wiley]
卷期号:13 (3): 460-465 被引量:13
标识
DOI:10.1111/1759-7714.14282
摘要

Saliva is often used as a biomarker for the diagnosis of some oral and systematic diseases, owing to the non-invasive attribute of the fluid. In this study, we aimed to identify salivary biomarkers for distinguishing lung cancer (LC) from benign lung lesion (BLL).Unstimulated saliva samples were collected from 41 patients with LC and 21 with BLL. Salivary metabolites were comprehensively analyzed using capillary electrophoresis mass spectrometry. To differentiate between patients with LCs and BLLs, the discriminatory ability of each biomarker was assessed. Furthermore, a multiple logistic regression (MLR) model was developed for evaluating discriminatory ability of each salivary metabolite.The profiles of 10 salivary metabolites were remarkably different between the LC and BLL samples. Among them, the concentration of salivary tryptophan was significantly lower in the samples from patients with LC than in those from patients with BLL, and the area under the curve (AUC) for discriminating patients with LC from those with BLL was 0.663 (95% confidence interval [CI] = 0.516-0.810, p = 0.036). Furthermore, from the MLR model developed using these metabolites, diethanolamine, cytosine, lysine, and tyrosine, were selected using the back-selection regression method. The MLR model based on these four metabolites had a high discriminatory ability for patients with LC and those with BLL (AUC = 0.729, 95% CI = 0.598-0.861, p = 0.003).The four salivary metabolites can serve as potential non-invasive biomarkers for distinguishing LC from BLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111关注了科研通微信公众号
1秒前
完美清炎发布了新的文献求助10
1秒前
1秒前
biiii发布了新的文献求助10
1秒前
Zsx发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
脑洞疼应助魏一鸣采纳,获得10
5秒前
6秒前
有魅力的又菱完成签到,获得积分20
6秒前
6秒前
6秒前
8秒前
8秒前
10秒前
NexusExplorer应助einspringen采纳,获得10
11秒前
12秒前
浮游应助尊敬的寄松采纳,获得10
12秒前
Cnak发布了新的文献求助10
13秒前
二由完成签到 ,获得积分10
13秒前
13秒前
15秒前
orixero应助junlin采纳,获得10
15秒前
顾矜应助einspringen采纳,获得10
16秒前
最爱看文献完成签到,获得积分10
17秒前
迷路山水完成签到,获得积分10
18秒前
biiii发布了新的文献求助10
19秒前
20秒前
20秒前
Criminology34应助郎帅采纳,获得10
20秒前
CodeCraft应助阿斯顿采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得30
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
小小完成签到,获得积分10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
changping应助科研通管家采纳,获得200
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
23秒前
Hilda007应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075694
求助须知:如何正确求助?哪些是违规求助? 4295434
关于积分的说明 13384434
捐赠科研通 4117167
什么是DOI,文献DOI怎么找? 2254723
邀请新用户注册赠送积分活动 1259361
关于科研通互助平台的介绍 1192085