Deep learning for assessment of environmental satisfaction using BIM big data in energy efficient building digital twins

无线传感器网络 能源消耗 节点(物理) 传感器融合 计算机科学 钥匙(锁) 工程类 质量(理念) 能量(信号处理) 人工智能 可靠性工程 数据挖掘 计算机网络 计算机安全 电气工程 数学 结构工程 统计 认识论 哲学
作者
Weixi Wang,Han Ding Guo,Xiaoming Li,Shengjun Tang,Jizhe Xia,Zhihan Lv
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:50: 101897-101897 被引量:53
标识
DOI:10.1016/j.seta.2021.101897
摘要

Energy efficient Building Digital Twins (BDTs) are researched using Building Information Model (BIM) to explore the key techniques of Digital Twins (DTs). DTs in buildings can be regarded as an expression of “BIM+,” born to digital descriptions. Comprehensive perception of physical systems is the preconditions for DTs implementation. BIM’s energy-saving design includes the selection of building orientation and building shape. BIM energy consumption analysis can compare different materials, examine the performance of various materials, and select the most suitable and most energy-efficient materials for building structure maintenance. Data Fusion Algorithm (DFA) in Wireless Sensor Networks (WSNs) is improved. A novel DFA is constructed by combining Backpropagation Neural Network (BPNN) with Dynamic Host Configuration Protocol (DCHP), recorded as BP-DCHP. Simulation experiment proves that BP-DCHP can prolong sensor nodes’ survival time and provide the highest data fusion quality. BP-DCHP runs for about 310 s, 500 s, and 705 s in WSNs consisting of 20, 50, and 100 WSNs, respectively. Moreover, BP-DCHP can provide higher quality given insufficient data fusion degree. Once the WSNs consume 50% of the total initial energy, BP-DCHP presents a shorter network delay, only 0.6 s on average in the 100-sensor-node-WSN. To validate BDTs’ effectiveness, the environmental satisfaction of residents from two Beijing intelligent communities is assessed using Deep Learning (DL) approach. Taking the data as the clue, the study establishes DTs serving the application of urban scene, which plays a certain role in promoting the technological innovation of BDTs, better optimizing the city and managing the city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十九发布了新的文献求助10
2秒前
2秒前
3秒前
无误发布了新的文献求助10
3秒前
ljw发布了新的文献求助10
4秒前
zhangyu应助沐风采纳,获得20
5秒前
comic发布了新的文献求助10
7秒前
耀阳发布了新的文献求助10
9秒前
Orange应助渣渣辉采纳,获得10
10秒前
zz完成签到,获得积分10
11秒前
13秒前
Jasper应助傲娇的曼香采纳,获得10
13秒前
13秒前
滚雪球的Dr Gao完成签到 ,获得积分10
14秒前
清秀的不言完成签到 ,获得积分10
14秒前
ljw完成签到,获得积分20
14秒前
写得出发的中完成签到,获得积分10
15秒前
15秒前
单一完成签到,获得积分10
19秒前
KAKA发布了新的文献求助10
21秒前
21秒前
Salt发布了新的文献求助10
21秒前
22秒前
Xangel发布了新的文献求助30
23秒前
xlj730227完成签到 ,获得积分10
24秒前
优雅的莫英关注了科研通微信公众号
24秒前
Lxx发布了新的文献求助10
25秒前
派大星完成签到,获得积分10
25秒前
26秒前
麦子发布了新的文献求助10
27秒前
xiao_J完成签到,获得积分10
29秒前
31秒前
西安浴日光能赵炜完成签到,获得积分10
32秒前
jwliu发布了新的文献求助10
34秒前
羊羊完成签到,获得积分10
35秒前
SciGPT应助宁学者采纳,获得10
36秒前
邱丘邱发布了新的文献求助15
36秒前
乔柯发布了新的文献求助10
39秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
研友_ngkyGn应助科研通管家采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075