Deep learning for assessment of environmental satisfaction using BIM big data in energy efficient building digital twins

无线传感器网络 能源消耗 节点(物理) 传感器融合 计算机科学 钥匙(锁) 工程类 质量(理念) 能量(信号处理) 人工智能 可靠性工程 数据挖掘 计算机网络 计算机安全 电气工程 哲学 结构工程 认识论 统计 数学
作者
Weixi Wang,Han Ding Guo,Xiaoming Li,Shengjun Tang,Jizhe Xia,Zhihan Lv
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:50: 101897-101897 被引量:53
标识
DOI:10.1016/j.seta.2021.101897
摘要

Energy efficient Building Digital Twins (BDTs) are researched using Building Information Model (BIM) to explore the key techniques of Digital Twins (DTs). DTs in buildings can be regarded as an expression of “BIM+,” born to digital descriptions. Comprehensive perception of physical systems is the preconditions for DTs implementation. BIM’s energy-saving design includes the selection of building orientation and building shape. BIM energy consumption analysis can compare different materials, examine the performance of various materials, and select the most suitable and most energy-efficient materials for building structure maintenance. Data Fusion Algorithm (DFA) in Wireless Sensor Networks (WSNs) is improved. A novel DFA is constructed by combining Backpropagation Neural Network (BPNN) with Dynamic Host Configuration Protocol (DCHP), recorded as BP-DCHP. Simulation experiment proves that BP-DCHP can prolong sensor nodes’ survival time and provide the highest data fusion quality. BP-DCHP runs for about 310 s, 500 s, and 705 s in WSNs consisting of 20, 50, and 100 WSNs, respectively. Moreover, BP-DCHP can provide higher quality given insufficient data fusion degree. Once the WSNs consume 50% of the total initial energy, BP-DCHP presents a shorter network delay, only 0.6 s on average in the 100-sensor-node-WSN. To validate BDTs’ effectiveness, the environmental satisfaction of residents from two Beijing intelligent communities is assessed using Deep Learning (DL) approach. Taking the data as the clue, the study establishes DTs serving the application of urban scene, which plays a certain role in promoting the technological innovation of BDTs, better optimizing the city and managing the city.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Izzy发布了新的文献求助10
刚刚
刚刚
善学以致用应助Daisy采纳,获得10
1秒前
飘逸的苡完成签到,获得积分10
1秒前
1秒前
1秒前
幸福小海豚完成签到,获得积分10
1秒前
1秒前
现代苑睐完成签到,获得积分10
2秒前
武昊天完成签到,获得积分20
2秒前
思源应助干净的寄风采纳,获得30
2秒前
文欣妍完成签到,获得积分10
2秒前
东1991发布了新的文献求助10
3秒前
旺哥完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
所所应助不安的晓灵采纳,获得10
4秒前
夏紊发布了新的文献求助10
4秒前
ddk发布了新的文献求助10
4秒前
Singularity应助zml采纳,获得10
5秒前
5秒前
lo发布了新的文献求助50
5秒前
阳光萌萌完成签到,获得积分10
5秒前
5秒前
棋士发布了新的文献求助10
5秒前
山岗落月发布了新的文献求助10
6秒前
asang完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
bu才发布了新的文献求助10
7秒前
8秒前
8秒前
无花果应助贪玩心情采纳,获得10
8秒前
8秒前
8秒前
zxr发布了新的文献求助10
8秒前
zyiyi完成签到,获得积分10
8秒前
9秒前
caidan发布了新的文献求助10
9秒前
秋雨绵绵完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271