Deep learning for assessment of environmental satisfaction using BIM big data in energy efficient building digital twins

无线传感器网络 能源消耗 节点(物理) 传感器融合 计算机科学 钥匙(锁) 工程类 质量(理念) 能量(信号处理) 人工智能 可靠性工程 数据挖掘 计算机网络 计算机安全 电气工程 哲学 结构工程 认识论 统计 数学
作者
Weixi Wang,Han Ding Guo,Xiaoming Li,Shengjun Tang,Jizhe Xia,Zhihan Lv
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:50: 101897-101897 被引量:53
标识
DOI:10.1016/j.seta.2021.101897
摘要

Energy efficient Building Digital Twins (BDTs) are researched using Building Information Model (BIM) to explore the key techniques of Digital Twins (DTs). DTs in buildings can be regarded as an expression of “BIM+,” born to digital descriptions. Comprehensive perception of physical systems is the preconditions for DTs implementation. BIM’s energy-saving design includes the selection of building orientation and building shape. BIM energy consumption analysis can compare different materials, examine the performance of various materials, and select the most suitable and most energy-efficient materials for building structure maintenance. Data Fusion Algorithm (DFA) in Wireless Sensor Networks (WSNs) is improved. A novel DFA is constructed by combining Backpropagation Neural Network (BPNN) with Dynamic Host Configuration Protocol (DCHP), recorded as BP-DCHP. Simulation experiment proves that BP-DCHP can prolong sensor nodes’ survival time and provide the highest data fusion quality. BP-DCHP runs for about 310 s, 500 s, and 705 s in WSNs consisting of 20, 50, and 100 WSNs, respectively. Moreover, BP-DCHP can provide higher quality given insufficient data fusion degree. Once the WSNs consume 50% of the total initial energy, BP-DCHP presents a shorter network delay, only 0.6 s on average in the 100-sensor-node-WSN. To validate BDTs’ effectiveness, the environmental satisfaction of residents from two Beijing intelligent communities is assessed using Deep Learning (DL) approach. Taking the data as the clue, the study establishes DTs serving the application of urban scene, which plays a certain role in promoting the technological innovation of BDTs, better optimizing the city and managing the city.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
安康完成签到,获得积分10
刚刚
刚刚
眼睛大的断缘完成签到,获得积分10
1秒前
王芋圆发布了新的文献求助10
1秒前
bear发布了新的文献求助10
2秒前
LF发布了新的文献求助10
2秒前
善学以致用应助yyyyyy采纳,获得10
2秒前
小姚完成签到,获得积分10
2秒前
日富一日完成签到,获得积分10
2秒前
酷波er应助糖糖糖采纳,获得10
2秒前
3秒前
依依发布了新的文献求助10
3秒前
KKK发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
傲娇的越泽完成签到,获得积分20
4秒前
wanci应助科研大捞采纳,获得10
4秒前
缓慢不悔应助忧伤的冰彤采纳,获得10
4秒前
欣于所遇完成签到,获得积分10
5秒前
5秒前
ycxxyc发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
852应助微凉采纳,获得10
7秒前
7秒前
7秒前
taotao216发布了新的文献求助10
7秒前
星辰大海应助生活的花采纳,获得10
7秒前
科目三应助科研工作者采纳,获得10
7秒前
8秒前
言言完成签到,获得积分10
8秒前
科研通AI6应助yyy采纳,获得10
9秒前
HOAN应助是帆帆呀采纳,获得30
10秒前
HAOHAO发布了新的文献求助10
10秒前
qqw完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
王芋圆完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894