Association between patient-, tooth- and treatment-level factors and root canal treatment failure: A retrospective longitudinal and machine learning study

医学 逻辑回归 协变量 接收机工作特性 牙科 回顾性队列研究 根管 牙槽 口腔正畸科 外科 内科学 统计 数学
作者
Chantal S. Herbst,Falk Schwendicke,Joachim Krois,Sascha Rudolf Herbst
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:117: 103937-103937 被引量:17
标识
DOI:10.1016/j.jdent.2021.103937
摘要

We aimed to assess patient-, tooth- and treatment-level covariates on the failure of root canal treatments (RT) and to predict failure using machine learning (ML).Teeth receiving RT at one large university hospital from 2016 to 2020 with a minimum follow-up of ≥6 months were included. Failure compromised absent radiographic healing and/or the presence of clinical symptoms. Covariates were selected on tooth-, treatment- and patient-level. We used logistic regression (logR) to determine associations in the full dataset, and logR as well as more advanced ML (random forests (RF), gradient boosting machine (GBM) and extremely gradient boosting (XGB)) for predictive modeling (area-under-the-receiver operating characteristic-curve (ROCAUC)) and testing on a separate test dataset.458 patients (female/male 47.2/52.8%) with 591 permanent teeth were included (overall success rate 79.5%). In logR, tooth-level covariates showed strong associations with failure: Alveolar bone loss 66-100% (ABL, OR 6.48, 95% CI [2.86, 14.89], p<0.001); Periapical index (PAI) score≥4 (OR 4.59, [2.44, 8.79], p<0.001); ABL 33-66% (OR 2.59 [1.49, 4.49], p<0.001); PAI=3 (OR 2.45, [1.43, 4.34], p<0.01); Treatment type "retreatment" (OR 1.77, [1.01, 2.86], p<0.01). On patient level only smoking (OR 2.05, [1.18, 3.53], p<0.05) was significantly associated with risk of failure. For predictive modeling, the predictive power of all models was limited (ROCAUC: logR 0.63, [0.53, 0.73]; GBM 0.59, [0.50, 0.68]; RF 0.59, [0.50, 0.68]; XGB 0.60, [0.50, 0.70]).Failure of RT was associated mainly with tooth-level covariates. Predicting failure was only limitedly possible, also with more complex ML.Identifying specific risk factors for failure of RT and predicting the outcome of RT is relevant for treatment planning and informed shared decision-making. The present study found tooth-level factors to be associated with failure. Notably, predicting failure was only limitedly possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助reuslee采纳,获得10
2秒前
2秒前
酷波er应助无辜洋葱采纳,获得10
3秒前
胡萝卜发布了新的文献求助10
4秒前
温暖的广缘完成签到 ,获得积分10
5秒前
木木 12完成签到,获得积分10
5秒前
隐形曼青应助zizizi采纳,获得10
6秒前
鸡蛋灌饼发布了新的文献求助10
7秒前
肥鱼不会飞完成签到,获得积分10
7秒前
xiaofang完成签到,获得积分10
7秒前
bofu发布了新的文献求助10
8秒前
帐个完成签到,获得积分20
8秒前
9秒前
11秒前
14秒前
bofu发布了新的文献求助10
14秒前
化学发布了新的文献求助10
15秒前
精气被实验吸干完成签到 ,获得积分10
16秒前
18秒前
18秒前
Owen应助kirirto采纳,获得10
20秒前
SYLH应助刻苦的小虾米采纳,获得10
21秒前
科研通AI5应助化学采纳,获得10
21秒前
bofu发布了新的文献求助10
22秒前
daisies完成签到,获得积分10
22秒前
23秒前
科研通AI2S应助找文献的仔采纳,获得10
25秒前
28秒前
科研通AI5应助忧郁的老头采纳,获得30
28秒前
29秒前
29秒前
bofu发布了新的文献求助10
29秒前
鲍文启发布了新的文献求助10
29秒前
suer完成签到,获得积分10
31秒前
32秒前
32秒前
33秒前
颜诗云完成签到 ,获得积分10
34秒前
欣喜威发布了新的文献求助10
36秒前
bofu发布了新的文献求助10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196