已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes

计算机科学 图形 断层(地质) GSM演进的增强数据速率 人工神经网络 模式识别(心理学) 特征(语言学) 嵌入 人工智能 数据挖掘 理论计算机科学 语言学 哲学 地震学 地质学
作者
Dongyue Chen,Ruonan Liu,Qinghua Hu,Steven X. Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6015-6028 被引量:58
标识
DOI:10.1109/tnnls.2021.3132376
摘要

Fault diagnosis of complex industrial processes becomes a challenging task due to various fault patterns in sensor signals and complex interactions between different units. However, how to explore the interactions and integrate with sensor signals remains an open question. Considering that the sensor signals and their interactions in an industrial process with the form of nodes and edges can be represented as a graph, this article proposes a novel interaction-aware and data fusion method for fault diagnosis of complex industrial processes, named interaction-aware graph neural networks (IAGNNs). First, to describe the complex interactions in an industrial process, the sensor signals are transformed into a heterogeneous graph with multiple edge types, and the edge weights are learned by the attention mechanism, adaptively. Then, multiple independent graph neural network (GNN) blocks are employed to extract the fault feature for each subgraph with one edge type. Finally, each subgraph feature is concatenated or fused by a weighted summation function to generate the final graph embedding. Therefore, the proposed method can learn multiple interactions between sensor signals and extract the fault feature from each subgraph by message passing operation of GNNs. The final fault feature contains the information from raw data and implicit interactions between sensor signals. The experimental results on the three-phase flow facility and power system (PS) demonstrate the reliable and superior performance of the proposed method for fault diagnosis of complex industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
limin发布了新的文献求助10
3秒前
Tatw完成签到 ,获得积分10
3秒前
平常的伊应助聪慧绮采纳,获得10
4秒前
Isaac完成签到,获得积分10
4秒前
4秒前
6秒前
充电宝应助谦让友绿采纳,获得10
6秒前
科研通AI2S应助摇一摇采纳,获得10
7秒前
8秒前
10秒前
10秒前
11秒前
干冷安发布了新的文献求助10
11秒前
孙大圣完成签到 ,获得积分10
12秒前
忧郁芝发布了新的文献求助10
12秒前
雪白的巧凡完成签到,获得积分10
12秒前
顺利丰收的神完成签到,获得积分10
12秒前
亚克西发布了新的文献求助10
13秒前
zoe关闭了zoe文献求助
15秒前
gugugaga发布了新的文献求助10
17秒前
17秒前
独特的泥猴桃关注了科研通微信公众号
17秒前
Raul发布了新的文献求助10
20秒前
汉堡包应助晚枫采纳,获得10
20秒前
20秒前
Singularity应助wangby1984采纳,获得10
21秒前
jg完成签到,获得积分10
22秒前
微笑驳完成签到 ,获得积分10
24秒前
25秒前
cookieMichael发布了新的文献求助150
25秒前
卡卡应助忧郁芝采纳,获得30
28秒前
善学以致用应助忧郁芝采纳,获得10
28秒前
xike完成签到,获得积分10
28秒前
30秒前
31秒前
切奇莉亚完成签到,获得积分10
32秒前
Akim应助冰水混合物煮香菇采纳,获得10
33秒前
34秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954