Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light

材料科学 催化作用 分解水 光催化分解水 光催化 量子效率 密度泛函理论 制氢 化学物理 纳米技术 化学工程 氢原子 硫化物 Atom(片上系统) 光化学 光电子学 化学 计算化学 嵌入式系统 工程类 有机化学 冶金 生物化学 烷基 计算机科学
作者
Wei Li,Xiao-shan Chu,Fei Wang,Yanyan Dang,Xiaoyun Liu,Tenghao Ma,Jiayuan Li,Chuanyi Wang
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:304: 121000-121000 被引量:98
标识
DOI:10.1016/j.apcatb.2021.121000
摘要

Solar-induced overall water splitting to produce hydrogen is inspiring towards energy sustainability, but it is also formidable due to its limited efficiency seriously hindering its scale up for practical application. CdS is an important transition metal sulfide with low-work-function. However, its photostability is often deteriorated due to photocorrosion influence. To overcome this issue, single-atom Pd was employed here to decorate CdS to form a CdS-Pd nanocatalyst through a simple and controllable photoinduced reduction strategy. The synergetic semiconductor (CdS)-metal (Pd) interaction promotes the fast bulk-to-surface electron migration, thereby the resultant CdS-Pd (3.83‰) nanocatalyst shows considerable structural stability and dramatically improved solar-induced HER activity in overall water splitting, about 110-fold higher than that of pristine CdS. Meanwhile, high apparent quantum yields (AQYs) of 4.47%/1.81% and 33.92%/27.49% were respectively achieved with this decorated nanocatalyst under the light of 420 nm/500 nm in absence and presence of scavenger, demonstrating the high-efficiency under broadband light illumination. Density functional theory (DFT) calculation supports that the easy formation of H* intermediates on the decorated nanocatalyst due to low energy barriers accounts for the internal promoted mechanism for hydrogen production. This study provides important insight to gain stable CdS-based photocatalysts for high-efficient hydrogen production by overall water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzzxxx发布了新的文献求助10
1秒前
zhjp发布了新的文献求助10
2秒前
白小白发布了新的文献求助10
3秒前
七七发布了新的文献求助10
4秒前
铁铁发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
zhjp完成签到,获得积分10
8秒前
Jun应助194711采纳,获得10
10秒前
10秒前
10秒前
橘子星发布了新的文献求助10
12秒前
L_Gary完成签到,获得积分10
13秒前
刘文静发布了新的文献求助10
14秒前
zzzxxx完成签到,获得积分10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得20
15秒前
李健应助科研通管家采纳,获得10
15秒前
子车茗应助科研通管家采纳,获得10
15秒前
子车茗应助科研通管家采纳,获得10
15秒前
15秒前
Singularity应助科研通管家采纳,获得20
15秒前
852应助科研通管家采纳,获得10
16秒前
我与论文不共戴天完成签到,获得积分10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
满唐完成签到 ,获得积分10
17秒前
articlechaser发布了新的文献求助10
17秒前
17秒前
20秒前
momomi发布了新的文献求助10
22秒前
23秒前
攒一口袋星星完成签到,获得积分10
23秒前
魏1122发布了新的文献求助10
24秒前
大模型应助郭娅楠采纳,获得10
24秒前
blue完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112