End to end multi-task learning with attention for multi-objective fault diagnosis under small sample

任务(项目管理) 计算机科学 人工智能 断层(地质) 样品(材料) 加权 机器学习 特征(语言学) 多任务学习 适应性 领域(数学) 数据挖掘 工程类 地质学 哲学 放射科 地震学 生物 医学 色谱法 化学 语言学 系统工程 纯数学 数学 生态学
作者
Zongliang Xie,Jinglong Chen,Yong Feng,Kaiyu Zhang,Zitong Zhou
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:62: 301-316 被引量:61
标识
DOI:10.1016/j.jmsy.2021.12.003
摘要

In recent years, deep learning (DL) based intelligent fault diagnosis method has been widely applied in the field of equipment fault diagnosis. However, most of the existing methods are mainly proposed for a single diagnosis objective, namely, they can only handle a single task such as recognizing different fault types (or locations) or identifying different fault severities. Besides, the scarce of data is a difficult issue because very few data could be obtained when a fault occurs. To overcome these challenges, a novel multi-task attention guided network (MTAGN) is proposed for multi-objective fault diagnosis under small sample in this paper. MTAGN consists of a task-shared network to learn a global feature pool and M task-specific attention networks to solve different tasks. With attention module, each task-specific network is able to extract useful features from task-shared network. Through multi-task learning, multiple tasks are trained simultaneously and the useful knowledge learned by each task could be utilized by each other to improve the performance. An adaptive weighting method is used in the training stage of MTAGN to balance between tasks and for better convergence results. We evaluated our method through three bearing datasets and the experimental results demonstrate the effectiveness and adaptability in different situations. Comparison experiment with other methods is also conducted in the same setup and the results proved the superiority of the proposed method under small sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助lalala采纳,获得10
刚刚
何小雨发布了新的文献求助10
1秒前
石力关注了科研通微信公众号
1秒前
好好学就能演完成签到,获得积分10
2秒前
Jro发布了新的文献求助10
2秒前
2秒前
无花果应助离开时是天命采纳,获得10
2秒前
2秒前
3秒前
longlu完成签到,获得积分10
3秒前
传奇3应助猴猴采纳,获得10
3秒前
Owen应助陈某某采纳,获得10
3秒前
搜集达人应助uki采纳,获得10
3秒前
3秒前
背后友蕊完成签到,获得积分10
4秒前
小马甲应助morph采纳,获得10
4秒前
Wang应助若雨沫采纳,获得20
4秒前
4秒前
4秒前
qkm123完成签到,获得积分10
4秒前
5秒前
5秒前
赘婿应助王倩倩采纳,获得10
5秒前
潇洒飞丹发布了新的文献求助10
5秒前
越野发布了新的文献求助10
5秒前
沉静语蝶完成签到,获得积分10
5秒前
Alex完成签到,获得积分10
6秒前
jsdiohfsiodhg发布了新的文献求助10
6秒前
6秒前
凯蒂宝贝完成签到,获得积分10
7秒前
tyx发布了新的文献求助10
7秒前
7秒前
小布丁完成签到 ,获得积分10
8秒前
uki完成签到,获得积分10
8秒前
背后友蕊发布了新的文献求助10
8秒前
xu发布了新的文献求助10
9秒前
lvjiahui发布了新的文献求助10
9秒前
董炳垚完成签到,获得积分10
9秒前
阿橘发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198