Magnetic straintronics: Manipulating the magnetization of magnetostrictive nanomagnets with strain for energy-efficient applications

纳米磁铁 计算机科学 自旋电子学 电气工程 物理 磁化 磁场 工程类 铁磁性 凝聚态物理 量子力学
作者
Supriyo Bandyopadhyay,Jayasimha Atulasimha,Anjan Barman
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:8 (4) 被引量:40
标识
DOI:10.1063/5.0062993
摘要

The desire to perform information processing, computation, communication, signal generation, and related tasks, while dissipating as little energy as possible, has inspired many ideas and paradigms. One of the most powerful among them is the notion of using magnetostrictive nanomagnets as the primitive units of the hardware platforms and manipulating their magnetizations (which are the state variables encoding information) with electrically generated static or time-varying mechanical strain to elicit myriad functionalities. This approach has two advantages. First, information can be retained in the devices after powering off since the nanomagnets are nonvolatile unlike charge-based devices, such as transistors. Second, the energy expended to perform a given task is exceptionally low since it takes very little energy to alter magnetization states with strain. This field is now known as “straintronics,” in analogy with electronics, spintronics, valleytronics, etc., although it pertains specifically to “magnetic” straintronics and excludes phenomena involving non-magnetic systems. We review the recent advances and trends in straintronics, including digital information processing (logic), information storage (memory), domain wall devices operated with strain, control of skyrmions with strain, non-Boolean computing and machine learning with straintronics, signal generation (microwave sources) and communication (ultra-miniaturized acoustic and electromagnetic antennas) implemented with strained nanomagnets, hybrid straintronics–magnonics, and interaction between phonons and magnons in straintronic systems. We identify key challenges and opportunities, and lay out pathways to advance this field to the point where it might become a mainstream technology for energy-efficient systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqwwqx发布了新的文献求助10
1秒前
1秒前
1秒前
活力的妙之完成签到 ,获得积分10
1秒前
充电宝应助坚强乌龟采纳,获得10
1秒前
xhy发布了新的文献求助10
2秒前
kingwill给zinnia的求助进行了留言
2秒前
大胆夜绿发布了新的文献求助10
2秒前
传统的凝天完成签到,获得积分10
2秒前
3秒前
尼克的朱迪完成签到,获得积分10
3秒前
3秒前
大个应助谷大喵唔采纳,获得10
3秒前
23发布了新的文献求助10
3秒前
简单的铃铛完成签到 ,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助体贴啤酒采纳,获得10
4秒前
5秒前
大模型应助Water103采纳,获得10
5秒前
6秒前
儒雅沛凝发布了新的文献求助10
6秒前
6秒前
DXXX发布了新的文献求助10
7秒前
小不溜完成签到 ,获得积分10
7秒前
王汉韬发布了新的文献求助10
7秒前
科研通AI2S应助咕噜仔采纳,获得20
7秒前
11111111完成签到,获得积分10
7秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
7秒前
8秒前
zbearupz完成签到,获得积分10
8秒前
xiao发布了新的文献求助10
9秒前
10秒前
10秒前
conghuiqu完成签到,获得积分10
10秒前
Superman完成签到 ,获得积分10
10秒前
哈哈呀发布了新的文献求助10
10秒前
大模型应助Yuki0616采纳,获得10
10秒前
牛肉干发布了新的文献求助10
11秒前
赘婿应助木子采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672