A deep learning based 2-dimensional hip pressure signals analysis method for sitting posture recognition

计算机科学 卷积神经网络 人工智能 缓冲垫 分类器(UML) 计算机视觉 压力传感器 特征提取 模式识别(心理学) 工程类 医学 机械工程 病理
作者
Zhe Fan,Xing Hu,Wen‐Ming Chen,Dawei Zhang,Xin Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103432-103432 被引量:18
标识
DOI:10.1016/j.bspc.2021.103432
摘要

Abnormal sitting postures usually cause adolescents' myopia, scoliosis, and degenerative diseases. Therefore, research on intelligent monitoring technology that can quickly and accurately identify irregular sitting postures is of profound significance to the healthy development of adolescents. Existing methods mostly use computer vision to recognize sitting posture, but the model is not only complicated but also easily interfered with by problems such as occlusion and light. This paper proposes a method based on the analysis of the pressure on the hip interface to identify the sitting postures. An array pressure sensor placed on the cushion collects the tester's hip pressure and obtains a pressure heat map. This paper uses traditional feature extraction and shallow classifier methods and popular end-to-end deep convolutional neural network (CNN) methods to identify different types of sitting postures. The method in this paper is verified on the data of multiple testers of different body types. Experimental results show that the classification accuracy based on CNN reaches 99.82%, which proves the effectiveness of the method in sitting posture recognition. The study indicated hip pressure distribution is closely related to the sitting posture, and compared with computer vision, it is less disturbed and easier to recognize. The time efficiency of feature extraction using CNN is nearly 30% higher than traditional methods. Therefore, in the practical application of real scenes, with the increase of data volume, the time benefit brought by CNN can be more considerable and our system can be embedded in the cushion and do real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王权霸业完成签到 ,获得积分10
刚刚
Chocolate发布了新的文献求助10
刚刚
zhaochen完成签到,获得积分10
1秒前
薄荷香菜汁完成签到,获得积分10
1秒前
Hello应助Villanellel采纳,获得20
1秒前
zxjs90408完成签到,获得积分20
3秒前
沉默的觅海完成签到,获得积分10
3秒前
3秒前
哟252完成签到,获得积分20
3秒前
细心可乐完成签到,获得积分10
4秒前
4秒前
5秒前
linxm7发布了新的文献求助10
5秒前
蛋白完成签到,获得积分10
6秒前
7秒前
CodeCraft应助dudu采纳,获得10
7秒前
阿媛呐发布了新的文献求助10
7秒前
8秒前
anchor完成签到,获得积分10
8秒前
楼丶完成签到,获得积分10
8秒前
深海soda完成签到,获得积分10
8秒前
jk258发布了新的文献求助10
9秒前
ily.完成签到,获得积分10
10秒前
Jasper应助小吃货采纳,获得10
11秒前
02完成签到,获得积分10
11秒前
细心可乐发布了新的文献求助10
11秒前
end发布了新的文献求助10
12秒前
anchor发布了新的文献求助10
13秒前
13秒前
14秒前
斜杠青年在路上完成签到,获得积分20
14秒前
模糊中正应助ily.采纳,获得20
15秒前
16秒前
科目三应助戴哈哈采纳,获得10
16秒前
香蕉觅云应助xujiejiuxi采纳,获得10
17秒前
大方的迎曼关注了科研通微信公众号
17秒前
bkagyin应助puriying采纳,获得10
17秒前
17秒前
17秒前
serenity711完成签到 ,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296296
求助须知:如何正确求助?哪些是违规求助? 2932217
关于积分的说明 8455244
捐赠科研通 2604679
什么是DOI,文献DOI怎么找? 1421883
科研通“疑难数据库(出版商)”最低求助积分说明 661255
邀请新用户注册赠送积分活动 644218