A deep learning based 2-dimensional hip pressure signals analysis method for sitting posture recognition

计算机科学 卷积神经网络 人工智能 缓冲垫 分类器(UML) 计算机视觉 压力传感器 特征提取 模式识别(心理学) 工程类 医学 机械工程 病理
作者
Zhe Fan,Xing Hu,Wen‐Ming Chen,Dawei Zhang,Xin Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103432-103432 被引量:19
标识
DOI:10.1016/j.bspc.2021.103432
摘要

Abnormal sitting postures usually cause adolescents' myopia, scoliosis, and degenerative diseases. Therefore, research on intelligent monitoring technology that can quickly and accurately identify irregular sitting postures is of profound significance to the healthy development of adolescents. Existing methods mostly use computer vision to recognize sitting posture, but the model is not only complicated but also easily interfered with by problems such as occlusion and light. This paper proposes a method based on the analysis of the pressure on the hip interface to identify the sitting postures. An array pressure sensor placed on the cushion collects the tester's hip pressure and obtains a pressure heat map. This paper uses traditional feature extraction and shallow classifier methods and popular end-to-end deep convolutional neural network (CNN) methods to identify different types of sitting postures. The method in this paper is verified on the data of multiple testers of different body types. Experimental results show that the classification accuracy based on CNN reaches 99.82%, which proves the effectiveness of the method in sitting posture recognition. The study indicated hip pressure distribution is closely related to the sitting posture, and compared with computer vision, it is less disturbed and easier to recognize. The time efficiency of feature extraction using CNN is nearly 30% higher than traditional methods. Therefore, in the practical application of real scenes, with the increase of data volume, the time benefit brought by CNN can be more considerable and our system can be embedded in the cushion and do real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼儿想游完成签到,获得积分10
刚刚
慎之完成签到 ,获得积分10
1秒前
5秒前
6秒前
科研不是科幻完成签到,获得积分10
7秒前
Owen应助加油采纳,获得10
8秒前
爱吃香菜发布了新的文献求助10
8秒前
Struggle完成签到 ,获得积分10
10秒前
俏皮诺言发布了新的文献求助10
12秒前
传奇3应助九湖夷上采纳,获得10
13秒前
wei完成签到,获得积分10
14秒前
娜娜完成签到,获得积分10
15秒前
陈芒果啊完成签到 ,获得积分10
15秒前
16秒前
海鲭完成签到,获得积分10
17秒前
可爱的函函应助Flying016采纳,获得30
18秒前
柠檬完成签到,获得积分20
20秒前
加油发布了新的文献求助10
20秒前
欣喜面包完成签到,获得积分10
23秒前
ding应助cuidalice采纳,获得10
24秒前
26秒前
29秒前
30秒前
南国有佳人完成签到,获得积分10
31秒前
星辰大海应助fzh采纳,获得20
31秒前
yuHS发布了新的文献求助10
34秒前
Owen应助wei采纳,获得10
34秒前
李健应助何佳妮采纳,获得10
35秒前
英姑应助天真的冬寒采纳,获得10
35秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
38秒前
40秒前
桐桐应助高姐姐采纳,获得10
41秒前
lucy4472完成签到,获得积分20
41秒前
42秒前
YH应助尊敬寒松采纳,获得50
42秒前
Tsui发布了新的文献求助10
42秒前
44秒前
Tuan发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844