Convolutional Neural Network based Segmentation of Abdominal Aortic Aneurysms.

分割 卷积神经网络 计算机科学 图像分割 人工智能 放射科 医学 腹主动脉瘤 模式识别(心理学) 深度学习 计算机辅助诊断
作者
Anish Salvi,Ender Finol,Prahlad G Menon
标识
DOI:10.1109/embc46164.2021.9629499
摘要

Abdominal aortic aneurysms (AAAs) are balloonlike dilations in the descending aorta associated with high mortality rates. Between 2009 and 2019, reported ruptured AAAs resulted in ~28,000 deaths while reported unruptured AAAs led to ~15,000 deaths. Automating identification of the presence, 3D geometric structure, and precise location of AAAs can inform clinical risk of AAA rupture and timely interventions. We investigate the feasibility of automatic segmentation of AAAs, inclusive of the aorta, aneurysm sac, intra-luminal thrombus, and surrounding calcifications, using 30 patient-specific computed tomography angiograms (CTAs). Binary masks of the AAA and their corresponding CTA images were used to train and test a 3D U-Net - a convolutional neural network (CNN) - model to automate AAA detection. We also studied model-specific convergence and overall segmentation accuracy via a loss-function developed based on the Dice Similarity Coefficient (DSC) for overlap between the predicted and actual segmentation masks. Further, we determined optimum probability thresholds (OPTs) for voxel-level probability outputs of a given model to optimize the DSC in our training set, and utilized 3D volume rendering with the visualization tool kit (VTK) to validate the same and inform the parameter optimization exercise. We examined model-specific consistency with regard to improving accuracy by training the CNN with incrementally increasing training samples and examining trends in DSC and corresponding OPTs that determine AAA segmentations. Our final trained models consistently produced automatic segmentations that were visually accurate with train and test set losses in inference converging as our training sample size increased. Transfer learning led to improvements in DSC loss in inference, with the median OPT of both the training segmentations and testing segmentations approaching 0.5, as more training samples were utilized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助咯咚采纳,获得10
刚刚
生动电脑完成签到,获得积分10
2秒前
2秒前
三水番完成签到,获得积分10
3秒前
简单糜完成签到,获得积分10
4秒前
在水一方应助111采纳,获得10
4秒前
一笑生花完成签到,获得积分10
5秒前
5秒前
6秒前
科目三应助VickyS采纳,获得10
7秒前
112233发布了新的文献求助10
7秒前
不良帅完成签到,获得积分10
8秒前
NexusExplorer应助KX2024采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
汉堡包应助支凤妖采纳,获得10
10秒前
爆米花应助风趣的慕灵采纳,获得10
10秒前
十一发布了新的文献求助20
11秒前
彭冬华完成签到,获得积分10
11秒前
FashionBoy应助三鲜汤采纳,获得10
11秒前
深情安青应助sijietan采纳,获得10
12秒前
even完成签到,获得积分10
13秒前
SciGPT应助故意的鸿涛采纳,获得10
13秒前
13秒前
Akim应助orange采纳,获得10
14秒前
wwwwwwjh完成签到,获得积分10
14秒前
念念完成签到,获得积分10
15秒前
15秒前
小匀匀21完成签到,获得积分10
15秒前
sherrywuxh完成签到,获得积分10
16秒前
フー・ヘイ・ホイ完成签到,获得积分10
16秒前
LLL发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
wanci应助better采纳,获得10
17秒前
开心完成签到,获得积分10
18秒前
18秒前
21秒前
21秒前
烟花应助优美紫槐采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513