亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Network based Segmentation of Abdominal Aortic Aneurysms.

分割 卷积神经网络 计算机科学 图像分割 人工智能 放射科 医学 腹主动脉瘤 模式识别(心理学) 深度学习 计算机辅助诊断
作者
Anish Salvi,Ender Finol,Prahlad G Menon
标识
DOI:10.1109/embc46164.2021.9629499
摘要

Abdominal aortic aneurysms (AAAs) are balloonlike dilations in the descending aorta associated with high mortality rates. Between 2009 and 2019, reported ruptured AAAs resulted in ~28,000 deaths while reported unruptured AAAs led to ~15,000 deaths. Automating identification of the presence, 3D geometric structure, and precise location of AAAs can inform clinical risk of AAA rupture and timely interventions. We investigate the feasibility of automatic segmentation of AAAs, inclusive of the aorta, aneurysm sac, intra-luminal thrombus, and surrounding calcifications, using 30 patient-specific computed tomography angiograms (CTAs). Binary masks of the AAA and their corresponding CTA images were used to train and test a 3D U-Net - a convolutional neural network (CNN) - model to automate AAA detection. We also studied model-specific convergence and overall segmentation accuracy via a loss-function developed based on the Dice Similarity Coefficient (DSC) for overlap between the predicted and actual segmentation masks. Further, we determined optimum probability thresholds (OPTs) for voxel-level probability outputs of a given model to optimize the DSC in our training set, and utilized 3D volume rendering with the visualization tool kit (VTK) to validate the same and inform the parameter optimization exercise. We examined model-specific consistency with regard to improving accuracy by training the CNN with incrementally increasing training samples and examining trends in DSC and corresponding OPTs that determine AAA segmentations. Our final trained models consistently produced automatic segmentations that were visually accurate with train and test set losses in inference converging as our training sample size increased. Transfer learning led to improvements in DSC loss in inference, with the median OPT of both the training segmentations and testing segmentations approaching 0.5, as more training samples were utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
摇摇猪发布了新的文献求助10
22秒前
24秒前
草莓奶昔完成签到 ,获得积分10
27秒前
女汉子kaikai完成签到 ,获得积分10
35秒前
CodeCraft应助摇摇猪采纳,获得10
38秒前
1分钟前
1分钟前
白白完成签到,获得积分10
1分钟前
摇摇猪发布了新的文献求助10
1分钟前
摇摇猪完成签到,获得积分10
2分钟前
gszy1975完成签到,获得积分10
2分钟前
止戈完成签到 ,获得积分10
2分钟前
中央完成签到,获得积分10
2分钟前
Akim应助糊涂的清醒者采纳,获得10
4分钟前
4分钟前
糊涂的清醒者完成签到,获得积分10
4分钟前
4分钟前
诚心的信封完成签到 ,获得积分10
6分钟前
7分钟前
8分钟前
DoggyBadiou发布了新的文献求助10
8分钟前
LEE完成签到,获得积分10
8分钟前
10分钟前
10分钟前
10分钟前
11分钟前
11分钟前
陈媛发布了新的文献求助10
11分钟前
小柯发布了新的文献求助10
11分钟前
小柯完成签到,获得积分10
11分钟前
CipherSage应助陈媛采纳,获得10
11分钟前
kuoping完成签到,获得积分10
12分钟前
12分钟前
陈媛发布了新的文献求助10
12分钟前
12分钟前
土豪的灵竹完成签到 ,获得积分10
12分钟前
丘比特应助陈媛采纳,获得10
13分钟前
13分钟前
完美世界应助一杯茶采纳,获得10
13分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818678
关于积分的说明 7921848
捐赠科研通 2478428
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438