Convolutional Neural Network based Segmentation of Abdominal Aortic Aneurysms.

分割 卷积神经网络 计算机科学 图像分割 人工智能 放射科 医学 腹主动脉瘤 模式识别(心理学) 深度学习 计算机辅助诊断
作者
Anish Salvi,Ender Finol,Prahlad G Menon
标识
DOI:10.1109/embc46164.2021.9629499
摘要

Abdominal aortic aneurysms (AAAs) are balloonlike dilations in the descending aorta associated with high mortality rates. Between 2009 and 2019, reported ruptured AAAs resulted in ~28,000 deaths while reported unruptured AAAs led to ~15,000 deaths. Automating identification of the presence, 3D geometric structure, and precise location of AAAs can inform clinical risk of AAA rupture and timely interventions. We investigate the feasibility of automatic segmentation of AAAs, inclusive of the aorta, aneurysm sac, intra-luminal thrombus, and surrounding calcifications, using 30 patient-specific computed tomography angiograms (CTAs). Binary masks of the AAA and their corresponding CTA images were used to train and test a 3D U-Net - a convolutional neural network (CNN) - model to automate AAA detection. We also studied model-specific convergence and overall segmentation accuracy via a loss-function developed based on the Dice Similarity Coefficient (DSC) for overlap between the predicted and actual segmentation masks. Further, we determined optimum probability thresholds (OPTs) for voxel-level probability outputs of a given model to optimize the DSC in our training set, and utilized 3D volume rendering with the visualization tool kit (VTK) to validate the same and inform the parameter optimization exercise. We examined model-specific consistency with regard to improving accuracy by training the CNN with incrementally increasing training samples and examining trends in DSC and corresponding OPTs that determine AAA segmentations. Our final trained models consistently produced automatic segmentations that were visually accurate with train and test set losses in inference converging as our training sample size increased. Transfer learning led to improvements in DSC loss in inference, with the median OPT of both the training segmentations and testing segmentations approaching 0.5, as more training samples were utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晚霞常有遗憾完成签到 ,获得积分10
5秒前
谢陈完成签到 ,获得积分10
6秒前
7秒前
小马甲应助请叫我盒子采纳,获得10
11秒前
ycl发布了新的文献求助10
11秒前
12秒前
自信的竹员外完成签到,获得积分10
13秒前
兴奋采梦完成签到,获得积分20
13秒前
慕容博发布了新的文献求助10
14秒前
研友_VZG7GZ应助舟遥遥采纳,获得10
16秒前
小元完成签到,获得积分10
16秒前
欢呼的世立完成签到 ,获得积分10
16秒前
纳米酶催化完成签到,获得积分10
17秒前
DrLiu完成签到,获得积分10
18秒前
繁荣的夏岚完成签到 ,获得积分10
19秒前
chenxing1947发布了新的文献求助10
19秒前
21秒前
Chroninus完成签到,获得积分10
22秒前
虚拟的水之完成签到 ,获得积分10
22秒前
七七丫完成签到,获得积分10
22秒前
23秒前
和尘同光完成签到,获得积分10
23秒前
DandanHan0916发布了新的文献求助150
24秒前
25秒前
兴奋采梦发布了新的文献求助10
25秒前
蘅皋发布了新的文献求助10
26秒前
勇敢且鲁班完成签到,获得积分10
27秒前
CodeCraft应助温柔的海安采纳,获得10
28秒前
舟遥遥发布了新的文献求助10
29秒前
30秒前
充电宝应助guard采纳,获得10
31秒前
科研通AI2S应助wos采纳,获得10
31秒前
都会完成签到 ,获得积分10
32秒前
如梦如画完成签到 ,获得积分10
32秒前
Lucas应助知性的觅露采纳,获得10
32秒前
Dritsw应助小野采纳,获得10
32秒前
32秒前
33秒前
挪威的森林完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278