已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer

胰腺癌 旁侵犯 生物标志物 危险系数 医学 比例危险模型 腺癌 癌症 阶段(地层学) 回顾性队列研究 队列 放射科 内科学 肿瘤科 置信区间 古生物学 生物化学 化学 生物
作者
Jiawen Yao,Kai Cao,Yang Hou,Jian Zhou,Yingda Xia,Isabella Nogues,Qike Song,Hai Fang,Xianghua Ye,Jianping Lu,Gang Jin,H. Lü,Chuanmiao Xie,Rong Zhang,Jing Xiao,Zaiyi Liu,Feng Gao,Yafei Qi,Xuezhou Li,Yang Zheng,Le Lü,Yu Shi,Ling Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3949434
摘要

Background: Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. To this end, we develop an objective and robust imaging biomarker for fully automated prediction of overall survival (OS) of pancreatic cancer by directly analyzing multiphase contrast-enhanced CT (CECT) using deep learning.Methods: This retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from five centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from two centers, was used to construct a fully-automated prognostic biomarker – DeepCT-PDAC – by training a holistic convolutional neural network for volumetric segmentation of PDAC and pancreatic anatomies and four subsequent networks for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179) to evaluate its performance, robustness, and clinical usefulness.Findings: Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts (hazard ratio [HR] 2·03, 95% CI 1·50–2·75, p<0·0001; HR 2·47, 1·35–4·53, p=0·0034) in a multivariable analysis including age, CT tumor size, tumor location, and CA 19-9. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR 2·49, 95% CI 1·89–3·28, p<0·0001; HR 2·15, 1·14–4·05, p=0·018) after adjustment for resection margin, pT stage, pN stage, tumor differentiation, perineural invasion, pathological tumor size, and treatment. For margin-negative patients, adjuvant radiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR 0·35, 95% CI 0·19–0·64, p=0·00036), but did not affect OS in the subgroup with high risk.Interpretation: Deep learning-derived CT imaging biomarker enabled objective and unbiased prediction of OS for resectable PDAC both pre- and postoperatively. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatment at the individual level.Funding: This research was supported by the National Natural Science Foundation of China (grant numbers 82071885 and 81771802 and 81771893) and the National Youth Talent Support Program of China.Declaration of Interest: We declare no competing interests.Ethical Approval: IRB approval for the retrospective review of imaging and clinical data was obtained from the local ethics committees for all cohorts. The need for informed consent was waived.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Doc.Lee采纳,获得10
1秒前
2秒前
叮咚雨发布了新的文献求助10
3秒前
5秒前
5秒前
8秒前
wang5945完成签到 ,获得积分10
10秒前
LJYang发布了新的文献求助30
11秒前
善学以致用应助Doc.Lee采纳,获得10
11秒前
13秒前
16秒前
EED完成签到 ,获得积分10
18秒前
ding应助默默的水桃采纳,获得10
19秒前
依唔吁发布了新的文献求助10
19秒前
秋葵拌饭发布了新的文献求助30
21秒前
伍仨仨完成签到,获得积分10
22秒前
LJYang完成签到,获得积分10
26秒前
酸色黑樱桃完成签到,获得积分10
28秒前
依唔吁完成签到,获得积分20
29秒前
冲冲冲完成签到 ,获得积分20
30秒前
就叫希望吧完成签到 ,获得积分10
31秒前
moony完成签到 ,获得积分10
31秒前
秋葵拌饭完成签到,获得积分20
33秒前
科研通AI2S应助瑶咕隆咚采纳,获得30
34秒前
38秒前
39秒前
xiaxia完成签到 ,获得积分10
42秒前
香雪若梅发布了新的文献求助10
43秒前
特特雷珀萨努完成签到 ,获得积分10
44秒前
酷波er应助科研通管家采纳,获得10
46秒前
机灵笑蓝完成签到 ,获得积分10
46秒前
46秒前
充电宝应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
48秒前
49秒前
万能图书馆应助鱼丸哒采纳,获得10
49秒前
50秒前
50秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793483
关于积分的说明 7806709
捐赠科研通 2449737
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601314