Impact of macroeconomic factors on ozone precursor emissions in China

环境科学 臭氧 中国 自然资源经济学 废物管理 经济 化学 工程类 政治学 有机化学 法学
作者
Ziming Pei,Xuwu Chen,Xiaodong Li,Jie Liang,Anqi Lin,Shuai Li,Suhang Yang,Juan Bin,Simin Dai
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:344: 130974-130974 被引量:14
标识
DOI:10.1016/j.jclepro.2022.130974
摘要

In recent years, ground-level ozone pollution is becoming increasingly severe in China. Long-term exposure to such an environment will threaten public health. Here, a Logarithmic Mean Divisia Index (LMDI) model was used to estimate the driving forces of VOCs and NOx, the two most important precursors of surface ozone. The LMDI model can decompose macroeconomic indicators, including per capita gross (PCG), energy intensity (EI), energy structure (ES), and pollutant emission intensity (EP), which can affect precursor emissions. Results indicate that PCG was the primary promoting factor of precursors, while EI and EP suppressed the precursor emissions. That is, the macroeconomic factors can affect precursor emissions, and then affect ozone concentrations. To demonstrate this, we used the random forest model to analyze the relationships between macroeconomic factors and ozone concentrations, together with meteorological elements. We found macroeconomic factors can improve the predictive performance of the Random Forest. The result revealed that it was feasible to restrain precursor emissions through macro-control, and then to adjust ozone concentrations appropriately. • The LMDI model is used to explore the impact of macroeconomic factors on NOx and VOCs emissions. • The Random Forest model is used to analyze the relationships between LMDI factors and ozone concentrations. • The result of Random Forest model proves that the LMDI factors have a certain relationship with ozone concentration. • It is feasible to control ozone concentration by controlling the emission of precursors through macro-control. • Both ozone pollution and the influence of LMDI factors are regional, policy formulation should take it into consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
算了就这发布了新的文献求助10
刚刚
jsyfanature完成签到,获得积分10
刚刚
jonghuang发布了新的文献求助10
2秒前
坚定海豚完成签到,获得积分10
2秒前
大个应助独特的凝荷采纳,获得10
3秒前
呆呆完成签到,获得积分10
4秒前
5秒前
bkagyin应助故意的冷之采纳,获得10
5秒前
啵啵完成签到 ,获得积分10
5秒前
索多倍完成签到,获得积分10
7秒前
7秒前
松本润不足完成签到,获得积分10
8秒前
10秒前
panda发布了新的文献求助10
11秒前
欣喜的莆完成签到 ,获得积分10
11秒前
奇迹行者发布了新的文献求助10
11秒前
小何0404完成签到,获得积分10
11秒前
贱小贱完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
15秒前
16秒前
17秒前
贪玩小小完成签到 ,获得积分10
17秒前
17秒前
19秒前
linggaga发布了新的文献求助10
19秒前
Paul_Geromeng完成签到,获得积分10
19秒前
ccc发布了新的文献求助10
20秒前
Charlotte发布了新的文献求助50
20秒前
suibian发布了新的文献求助10
20秒前
panda完成签到,获得积分10
21秒前
可爱的函函应助凤凤采纳,获得10
22秒前
lhy完成签到,获得积分10
22秒前
JamesPei应助limingya采纳,获得10
25秒前
zho发布了新的文献求助30
26秒前
26秒前
没名字完成签到,获得积分10
26秒前
南小琴发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023