Impact of macroeconomic factors on ozone precursor emissions in China

环境科学 臭氧 中国 自然资源经济学 废物管理 经济 化学 工程类 政治学 有机化学 法学
作者
Ziming Pei,Xuwu Chen,Xiaodong Li,Jie Liang,Anqi Lin,Shuai Li,Suhang Yang,Juan Bin,Simin Dai
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:344: 130974-130974 被引量:14
标识
DOI:10.1016/j.jclepro.2022.130974
摘要

In recent years, ground-level ozone pollution is becoming increasingly severe in China. Long-term exposure to such an environment will threaten public health. Here, a Logarithmic Mean Divisia Index (LMDI) model was used to estimate the driving forces of VOCs and NOx, the two most important precursors of surface ozone. The LMDI model can decompose macroeconomic indicators, including per capita gross (PCG), energy intensity (EI), energy structure (ES), and pollutant emission intensity (EP), which can affect precursor emissions. Results indicate that PCG was the primary promoting factor of precursors, while EI and EP suppressed the precursor emissions. That is, the macroeconomic factors can affect precursor emissions, and then affect ozone concentrations. To demonstrate this, we used the random forest model to analyze the relationships between macroeconomic factors and ozone concentrations, together with meteorological elements. We found macroeconomic factors can improve the predictive performance of the Random Forest. The result revealed that it was feasible to restrain precursor emissions through macro-control, and then to adjust ozone concentrations appropriately. • The LMDI model is used to explore the impact of macroeconomic factors on NOx and VOCs emissions. • The Random Forest model is used to analyze the relationships between LMDI factors and ozone concentrations. • The result of Random Forest model proves that the LMDI factors have a certain relationship with ozone concentration. • It is feasible to control ozone concentration by controlling the emission of precursors through macro-control. • Both ozone pollution and the influence of LMDI factors are regional, policy formulation should take it into consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
223344完成签到,获得积分10
1秒前
欧阳半仙完成签到,获得积分10
1秒前
2秒前
bkagyin应助xm采纳,获得10
2秒前
赘婿应助gwh68964402gwh采纳,获得10
2秒前
我瞎蒙完成签到,获得积分10
3秒前
yzz发布了新的文献求助10
3秒前
赖道之发布了新的文献求助10
4秒前
熊猫完成签到,获得积分10
4秒前
Yvonne发布了新的文献求助10
5秒前
NANA发布了新的文献求助10
5秒前
yoyocici1505完成签到,获得积分10
5秒前
ding应助平常的擎宇采纳,获得30
6秒前
於松应助Chang采纳,获得20
6秒前
刻苦问柳完成签到,获得积分10
6秒前
呆萌小鸭子完成签到 ,获得积分10
6秒前
白白完成签到,获得积分10
6秒前
Lxy完成签到,获得积分10
6秒前
7秒前
橙子味完成签到 ,获得积分10
7秒前
8秒前
8秒前
dong完成签到,获得积分10
8秒前
9秒前
科研通AI5应助刘芸芸采纳,获得10
10秒前
baijiayi完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
song发布了新的文献求助10
11秒前
LEMON发布了新的文献求助10
12秒前
12秒前
Aha完成签到 ,获得积分10
12秒前
12秒前
乐乐应助狂野世立采纳,获得10
13秒前
yzz完成签到,获得积分10
13秒前
13秒前
SYLH应助曾水采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762