锕系元素
密度泛函理论
铀酰
计算化学
分子
Atom(片上系统)
原子轨道
化学
材料科学
电子
无机化学
铀
物理
计算机科学
核物理学
冶金
有机化学
嵌入式系统
作者
Young-Jin Kwon,Hee‐Kyung Kim,Keunhong Jeong
出处
期刊:Molecules
[MDPI AG]
日期:2022-02-23
卷期号:27 (5): 1500-1500
被引量:4
标识
DOI:10.3390/molecules27051500
摘要
Density functional theory (DFT) is a widely used computational method for predicting the physical and chemical properties of metals and organometals. As the number of electrons and orbitals in an atom increases, DFT calculations for actinide complexes become more demanding due to increased complexity. Moreover, reasonable levels of theory for calculating the structures of actinide complexes are not extensively studied. In this study, 38 calculations, based on various combinations, were performed on molecules containing two representative actinides to determine the optimal combination for predicting the geometries of actinide complexes. Among the 38 calculations, four optimal combinations were identified and compared with experimental data. The optimal combinations were applied to a more complicated and practical actinide compound, the uranyl complex (UO2(2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)(CH3OH)), for further confirmation. The corresponding optimal calculation combination provides a reasonable level of theory for accurately optimizing the structure of actinide complexes using DFT.
科研通智能强力驱动
Strongly Powered by AbleSci AI