内分泌学
内科学
糖尿病肾病
血管紧张素II
链脲佐菌素
肾
肾素-血管紧张素系统
肾病
血管紧张素Ⅱ受体1型
受体
医学
生物
糖尿病
血压
作者
Kotaro Haruhara,Toru Suzuki,Hiromichi Wakui,Kengo Azushima,Daisuke Kurotaki,Wataru Kawase,Kazushi Uneda,Ryu Kobayashi,Kohji Ohki,Sho Kinguchi,Takahiro Yamaji,Ikuma Kato,Kenichi Ohashi,Akio Yamashita,Tomohiko Tamura,Nobuo Tsuboi,Takashi Yokoo,Kouichi Tamura
标识
DOI:10.1016/j.kint.2022.01.031
摘要
Although activation of the renin-angiotensin system and of its glomerular components is implicated in the pathogenesis of diabetic nephropathy, the functional roles of the tubular renin-angiotensin system with AT1 receptor signaling in diabetic nephropathy are unclear. Tissue hyperactivity of the renin-angiotensin system is inhibited by the angiotensin II type 1 receptor-associated protein ATRAP, which negatively regulates receptor signaling. The highest expression of endogenous ATRAP occurs in the kidney, where it is mainly expressed by tubules but rarely in glomeruli. Here, we found that hyperactivation of angiotensin II type 1 receptor signaling in kidney tubules exacerbated diabetic glomerular injury in a mouse model of streptozotocin-induced diabetic nephropathy. These phenomena were accompanied by decreased expression of CD206, a marker of alternatively activated and tissue-reparative M2 macrophages, in the kidney tubulointerstitium. Additionally, adoptive transfer of M2- polarized macrophages into diabetic ATRAP-knockout mice ameliorated the glomerular injury. As a possible mechanism, the glomerular mRNA levels of tumor necrosis factor-α and oxidative stress components were increased in diabetic knockout mice compared to non-diabetic knockout mice, but these increases were ameliorated by adoptive transfer. Furthermore, proximal tubule-specific ATRAP downregulation reduced tubulointerstitial expression of CD206, the marker of M2 macrophages in diabetic mice. Thus, our findings indicate that tubular ATRAP-mediated functional modulation of angiotensin II type 1 receptor signaling modulates the accumulation of tubulointerstitial M2 macrophages, thus affecting glomerular manifestations of diabetic nephropathy via tubule-glomerular crosstalk.
科研通智能强力驱动
Strongly Powered by AbleSci AI