BioDKG–DDI: predicting drug–drug interactions based on drug knowledge graph fusing biochemical information

稳健性(进化) 计算机科学 机器学习 人工智能 药品 交互信息 图形 药物重新定位 计算生物学 药理学 生物 理论计算机科学 数学 生物化学 基因 统计
作者
Zhong-Hao Ren,Chang-Qing Yu,Liping Li,Zhu‐Hong You,Yong-Jian Guan,Xinfei Wang,Jie Pan
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:21 (3): 216-229 被引量:15
标识
DOI:10.1093/bfgp/elac004
摘要

Abstract The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug–drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG–DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG–DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG–DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
脑洞疼应助慧海拾穗采纳,获得10
1秒前
1秒前
Miraitowa发布了新的文献求助10
1秒前
yydragen应助犹豫忆灵采纳,获得40
1秒前
shinysparrow应助怕孤单的易形采纳,获得200
1秒前
2秒前
zong240221完成签到 ,获得积分10
2秒前
背后的世开完成签到,获得积分10
3秒前
皇甫佳一完成签到,获得积分10
3秒前
liu123479完成签到,获得积分10
3秒前
4秒前
斑马发布了新的文献求助10
4秒前
5秒前
洋甘菊完成签到,获得积分10
5秒前
共享精神应助2331547774采纳,获得10
5秒前
秋海棠完成签到,获得积分10
6秒前
无限雨南完成签到,获得积分10
6秒前
6秒前
大家好完成签到 ,获得积分10
6秒前
水星完成签到,获得积分10
7秒前
695发布了新的文献求助10
7秒前
7秒前
勤奋的绪完成签到,获得积分10
8秒前
麦克阿宇完成签到,获得积分10
8秒前
124dc发布了新的文献求助10
10秒前
10秒前
starkisses完成签到,获得积分10
10秒前
PROTAC发布了新的文献求助10
10秒前
科目三应助zyp3344采纳,获得10
10秒前
充电宝应助lxy采纳,获得10
11秒前
11秒前
风中道罡发布了新的文献求助10
11秒前
大兵哥完成签到 ,获得积分0
12秒前
12秒前
13秒前
DimWhite完成签到,获得积分10
14秒前
独特的绿蝶完成签到,获得积分10
14秒前
xiaostou发布了新的文献求助200
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957243
求助须知:如何正确求助?哪些是违规求助? 3503275
关于积分的说明 11112387
捐赠科研通 3234383
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330