BioDKG–DDI: predicting drug–drug interactions based on drug knowledge graph fusing biochemical information

稳健性(进化) 计算机科学 机器学习 人工智能 药品 交互信息 图形 药物重新定位 计算生物学 药理学 生物 理论计算机科学 数学 生物化学 基因 统计
作者
Zhong-Hao Ren,Chang-Qing Yu,Liping Li,Zhu‐Hong You,Yong-Jian Guan,Xinfei Wang,Jie Pan
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:21 (3): 216-229 被引量:15
标识
DOI:10.1093/bfgp/elac004
摘要

Abstract The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug–drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG–DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG–DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG–DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色的梦发布了新的文献求助10
2秒前
2秒前
4秒前
闪闪如南发布了新的文献求助10
7秒前
99668完成签到,获得积分10
8秒前
9秒前
pengchen完成签到 ,获得积分10
9秒前
9秒前
万能图书馆应助默默的XJ采纳,获得10
10秒前
瘦子想胖发布了新的文献求助10
15秒前
yt完成签到,获得积分10
15秒前
大龙哥886应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
雨姐科研应助科研通管家采纳,获得10
16秒前
宅多点应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得30
16秒前
竹夕完成签到 ,获得积分10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
宅多点应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
宅多点应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
17秒前
一叶知秋应助科研通管家采纳,获得10
17秒前
1101592875应助科研通管家采纳,获得10
17秒前
JamesPei应助闪闪如南采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
无极微光应助科研通管家采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870