BioDKG–DDI: predicting drug–drug interactions based on drug knowledge graph fusing biochemical information

稳健性(进化) 计算机科学 机器学习 人工智能 药品 交互信息 图形 药物重新定位 计算生物学 药理学 生物 理论计算机科学 数学 生物化学 基因 统计
作者
Zhong-Hao Ren,Chang-Qing Yu,Liping Li,Zhu‐Hong You,Yong-Jian Guan,Xinfei Wang,Jie Pan
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:21 (3): 216-229 被引量:15
标识
DOI:10.1093/bfgp/elac004
摘要

Abstract The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug–drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG–DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG–DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG–DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liao_duoduo采纳,获得10
1秒前
种草匠完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得50
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
LaTeXer应助科研通管家采纳,获得50
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
易点邦应助科研通管家采纳,获得100
4秒前
wanci应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
xzy998应助日笙采纳,获得10
7秒前
孙国扬完成签到 ,获得积分10
7秒前
酷波er应助留胡子的迎梦采纳,获得10
9秒前
9秒前
一一发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
huhuhu发布了新的文献求助10
11秒前
LYD发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601