BioDKG–DDI: predicting drug–drug interactions based on drug knowledge graph fusing biochemical information

稳健性(进化) 计算机科学 机器学习 人工智能 药品 交互信息 图形 药物重新定位 计算生物学 药理学 生物 理论计算机科学 数学 生物化学 基因 统计
作者
Zhong-Hao Ren,Chang-Qing Yu,Liping Li,Zhu‐Hong You,Yong-Jian Guan,Xinfei Wang,Jie Pan
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:21 (3): 216-229 被引量:15
标识
DOI:10.1093/bfgp/elac004
摘要

Abstract The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug–drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG–DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG–DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG–DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听导师发布了新的文献求助10
刚刚
刚刚
季忆完成签到,获得积分10
刚刚
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808