散热片
传热
热能储存
核工程
材料科学
相变材料
热的
热力学
工程类
物理
作者
Alireza Moradikazerouni
标识
DOI:10.1016/j.est.2022.104097
摘要
• Passive and active cooling techniques for battery and electronic components cooling • Computational and experimental techniques for battery and electronic components cooling • Single phase coolant investigation • Geometry optimization concerning energy management • Flat plate, pin fin, and microchannel heat sink cooling investigation Heat sinks are considered as heat exchangers employed to cool high-temperature devices such as electronic components. They can significantly improve heat dissipation from the base surface. A wide range of heat sink geometries is categorized into three major types: flat-plate, pin-fin, and microchannel heat sinks. Over the past few decades, to keep up with the rate of electronics components heat flux, extensive examinations carried to enhance heat sinks thermal performance include various fabrication materials, single-phase coolants, geometry optimization, and designing complicated heat sink concepts. Heat sink optimization contributes a significant opportunity to improve thermal management and reduce energy consumption. Hence, developing and reviewing different heat sink research methodologies is fundamental. This paper reviews various research methodologies (using single-phase coolant) to aim for heat sink optimization and thermal performance enhancement in three geometry categories (flat-plate, pin-fin, and microchannel). The reviewed articles focused on experimental, numerical, and computational efforts on energy storage thermal managements utilizing single-phase coolant for flat-plate, pin-fin, and microchannel heat sinks design.
科研通智能强力驱动
Strongly Powered by AbleSci AI