A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis

计算机科学 学习迁移 一般化 断层(地质) 匹配(统计) 人工智能 特征(语言学) 领域(数学分析) 数据挖掘 利用 机器学习 知识转移 适应(眼睛) 模式识别(心理学) 数学 数学分析 哲学 地质学 物理 光学 地震学 统计 知识管理 语言学 计算机安全
作者
Jinghui Tian,Dongying Han,Mengdi Li,Peiming Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108466-108466 被引量:171
标识
DOI:10.1016/j.knosys.2022.108466
摘要

In modern industrial equipment maintenance, transfer learning is a promising tool that has been widely utilized to solve the problem of the insufficient generalization ability of diagnostic models, caused by changes in working conditions. However, owing to the single knowledge transfer source and fuzzy marginal distribution matching, the ability of traditional transfer learning methods for cross-domain fault diagnosis is not ideal. In practice, collecting multi-source data from different scenarios can provide richer generalization knowledge, and fine-grained information matching of relevant subdomains can achieve more accurate knowledge transfer, which is conducive to the improvement of the cross-domain fault diagnosis performance. To this end, a multi-source subdomain adaptation transfer learning method is proposed to transfer diagnostic knowledge from multiple sources for cross-domain fault diagnosis. This approach exploits a multi-branch network structure to match the feature spatial distributions of each source and target domain separately, where the local maximum mean discrepancy is used for fine-grained local alignment of subdomain distributions within the same category of different domains. Moreover, the weighted score of a source-specific is obtained according to its distribution distance, and multiple source classifiers are combined with the corresponding weighted scores for the joint diagnosis of the device status. Extensive experiments are conducted on three rotating machinery datasets to verify the effectiveness of the proposed model for cross-domain fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shealyn发布了新的文献求助30
刚刚
赵崇宝完成签到,获得积分20
1秒前
1秒前
1秒前
mkmimii发布了新的文献求助10
2秒前
SciGPT应助笑点低蜜蜂采纳,获得10
2秒前
端木眼眼发布了新的文献求助10
2秒前
2秒前
ddddansu发布了新的文献求助10
2秒前
杜丽芳发布了新的文献求助10
2秒前
lwl发布了新的文献求助10
2秒前
adrift发布了新的文献求助10
3秒前
3秒前
张张张完成签到,获得积分10
3秒前
3秒前
小朱完成签到,获得积分10
4秒前
Vanilla发布了新的文献求助30
4秒前
慕青应助dd采纳,获得10
4秒前
汉堡包应助芜湖采纳,获得10
4秒前
Mine发布了新的文献求助10
4秒前
莹莹完成签到 ,获得积分10
4秒前
熙欢发布了新的文献求助10
5秒前
机灵花生完成签到,获得积分10
5秒前
思源应助和谐板栗采纳,获得80
5秒前
无花果应助今夜无人入眠采纳,获得10
6秒前
田様应助青云天采纳,获得10
6秒前
且慢应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
7秒前
DUAN完成签到,获得积分10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
希望天下0贩的0应助xxx采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
wanqiu发布了新的文献求助20
7秒前
英姑应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Hello应助畅快远山采纳,获得10
7秒前
杨丽佳完成签到,获得积分10
7秒前
kikichiu应助科研通管家采纳,获得10
7秒前
十二个完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472888
求助须知:如何正确求助?哪些是违规求助? 4575120
关于积分的说明 14350464
捐赠科研通 4502441
什么是DOI,文献DOI怎么找? 2467176
邀请新用户注册赠送积分活动 1455104
关于科研通互助平台的介绍 1429273