A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis

计算机科学 学习迁移 一般化 断层(地质) 匹配(统计) 人工智能 特征(语言学) 领域(数学分析) 数据挖掘 利用 机器学习 知识转移 适应(眼睛) 模式识别(心理学) 数学 数学分析 哲学 地质学 物理 光学 地震学 统计 知识管理 语言学 计算机安全
作者
Jinghui Tian,Dongying Han,Mengdi Li,Peiming Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108466-108466 被引量:171
标识
DOI:10.1016/j.knosys.2022.108466
摘要

In modern industrial equipment maintenance, transfer learning is a promising tool that has been widely utilized to solve the problem of the insufficient generalization ability of diagnostic models, caused by changes in working conditions. However, owing to the single knowledge transfer source and fuzzy marginal distribution matching, the ability of traditional transfer learning methods for cross-domain fault diagnosis is not ideal. In practice, collecting multi-source data from different scenarios can provide richer generalization knowledge, and fine-grained information matching of relevant subdomains can achieve more accurate knowledge transfer, which is conducive to the improvement of the cross-domain fault diagnosis performance. To this end, a multi-source subdomain adaptation transfer learning method is proposed to transfer diagnostic knowledge from multiple sources for cross-domain fault diagnosis. This approach exploits a multi-branch network structure to match the feature spatial distributions of each source and target domain separately, where the local maximum mean discrepancy is used for fine-grained local alignment of subdomain distributions within the same category of different domains. Moreover, the weighted score of a source-specific is obtained according to its distribution distance, and multiple source classifiers are combined with the corresponding weighted scores for the joint diagnosis of the device status. Extensive experiments are conducted on three rotating machinery datasets to verify the effectiveness of the proposed model for cross-domain fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周轩完成签到,获得积分10
1秒前
2秒前
张佳伟发布了新的文献求助10
2秒前
2秒前
医者完成签到,获得积分10
5秒前
5秒前
西瓜刀发布了新的文献求助10
6秒前
6秒前
周轩发布了新的文献求助10
6秒前
Crane发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
9秒前
小马甲应助下次一定采纳,获得10
9秒前
小二郎应助jg采纳,获得10
10秒前
10秒前
13秒前
14秒前
14秒前
14秒前
茹茹发布了新的文献求助10
15秒前
一号位完成签到,获得积分20
15秒前
聆听发布了新的文献求助10
15秒前
15秒前
能干彤完成签到,获得积分10
16秒前
越旻发布了新的文献求助10
18秒前
下次一定发布了新的文献求助10
18秒前
19秒前
laifeihong发布了新的文献求助50
20秒前
Jessica完成签到,获得积分0
20秒前
量子星尘发布了新的文献求助10
20秒前
出其东门完成签到,获得积分10
20秒前
核动力驴应助霍元甲采纳,获得10
21秒前
上官若男应助霍元甲采纳,获得10
21秒前
Mida应助开花不铁树采纳,获得10
24秒前
打打应助chemlink采纳,获得10
27秒前
27秒前
鱻雩关注了科研通微信公众号
29秒前
细心的思远完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690