A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis

计算机科学 学习迁移 一般化 断层(地质) 匹配(统计) 人工智能 特征(语言学) 领域(数学分析) 数据挖掘 利用 机器学习 知识转移 适应(眼睛) 模式识别(心理学) 数学 数学分析 哲学 地质学 物理 光学 地震学 统计 知识管理 语言学 计算机安全
作者
Jinghui Tian,Dongying Han,Mengdi Li,Peiming Shi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108466-108466 被引量:171
标识
DOI:10.1016/j.knosys.2022.108466
摘要

In modern industrial equipment maintenance, transfer learning is a promising tool that has been widely utilized to solve the problem of the insufficient generalization ability of diagnostic models, caused by changes in working conditions. However, owing to the single knowledge transfer source and fuzzy marginal distribution matching, the ability of traditional transfer learning methods for cross-domain fault diagnosis is not ideal. In practice, collecting multi-source data from different scenarios can provide richer generalization knowledge, and fine-grained information matching of relevant subdomains can achieve more accurate knowledge transfer, which is conducive to the improvement of the cross-domain fault diagnosis performance. To this end, a multi-source subdomain adaptation transfer learning method is proposed to transfer diagnostic knowledge from multiple sources for cross-domain fault diagnosis. This approach exploits a multi-branch network structure to match the feature spatial distributions of each source and target domain separately, where the local maximum mean discrepancy is used for fine-grained local alignment of subdomain distributions within the same category of different domains. Moreover, the weighted score of a source-specific is obtained according to its distribution distance, and multiple source classifiers are combined with the corresponding weighted scores for the joint diagnosis of the device status. Extensive experiments are conducted on three rotating machinery datasets to verify the effectiveness of the proposed model for cross-domain fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聪慧雪糕发布了新的文献求助10
3秒前
yu发布了新的文献求助10
4秒前
4秒前
袁宁蔓完成签到,获得积分10
4秒前
迟梦发布了新的文献求助10
4秒前
7秒前
科研通AI6应助飞天大南瓜采纳,获得10
7秒前
ling完成签到,获得积分10
11秒前
11秒前
11秒前
余喆完成签到,获得积分10
13秒前
lzm完成签到,获得积分10
16秒前
鲤鱼荔枝发布了新的文献求助10
16秒前
柚子茶茶茶完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
18秒前
xiao白完成签到,获得积分10
19秒前
烦恼得得得完成签到,获得积分10
20秒前
风中的惊蛰完成签到,获得积分10
21秒前
youxianlang完成签到,获得积分10
22秒前
zm发布了新的文献求助10
22秒前
李爱国应助liwenmming采纳,获得10
23秒前
小小牛马发布了新的文献求助10
23秒前
24秒前
Akim应助zm采纳,获得10
28秒前
科研通AI6应助飞天大南瓜采纳,获得30
28秒前
Zyc发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
李薇完成签到,获得积分20
29秒前
30秒前
30秒前
31秒前
31秒前
清爽寒梦完成签到 ,获得积分20
32秒前
李薇发布了新的文献求助20
32秒前
浮游应助积极松鼠采纳,获得10
33秒前
34秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457292
求助须知:如何正确求助?哪些是违规求助? 4563793
关于积分的说明 14291406
捐赠科研通 4488476
什么是DOI,文献DOI怎么找? 2458514
邀请新用户注册赠送积分活动 1448579
关于科研通互助平台的介绍 1424214