计算机科学
边距(机器学习)
正规化(语言学)
班级(哲学)
人工智能
集合(抽象数据类型)
方案(数学)
简单
机器学习
对象(语法)
基本事实
功能(生物学)
数学
数学分析
哲学
认识论
程序设计语言
进化生物学
生物
作者
Enrico Fini,Enver Sangineto,Stéphane Lathuilière,Zhun Zhong,Moin Nabi,Elisa Ricci
标识
DOI:10.1109/iccv48922.2021.00915
摘要
In this paper, we study the problem of Novel Class Discovery (NCD). NCD aims at inferring novel object categories in an unlabeled set by leveraging from prior knowledge of a labeled set containing different, but related classes. Existing approaches tackle this problem by considering multiple objective functions, usually involving specialized loss terms for the labeled and the unlabeled samples respectively, and often requiring auxiliary regularization terms. In this paper we depart from this traditional scheme and introduce a UNified Objective function (UNO) for discovering novel classes, with the explicit purpose of favoring synergy between supervised and unsupervised learning. Using a multi-view self-labeling strategy, we generate pseudo-labels that can be treated homogeneously with ground truth labels. This leads to a single classification objective operating on both known and unknown classes. De-spite its simplicity, UNO outperforms the state of the art by a significant margin on several benchmarks (≈ +10% on CIFAR-100 and +8% on ImageNet). The project page is available at : https://ncd-uno.github.io.
科研通智能强力驱动
Strongly Powered by AbleSci AI