Interleukin-8: An evolving chemokine

趋化因子 生物 炎症 免疫学
作者
Kouji Matsushima,De Yang,Joost J. Oppenheim
出处
期刊:Cytokine [Elsevier BV]
卷期号:153: 155828-155828 被引量:295
标识
DOI:10.1016/j.cyto.2022.155828
摘要

Early in the 1980s several laboratories mistakenly reported that partially purified interleukin-1 (IL-1) was chemotactic for neutrophils. However, further investigations by us, revealed that our purified IL-1 did not have neutrophil chemotactic activity and this activity in the LPS-stimulated human monocyte conditioned media could clearly be separated from IL-1 activity on HPLC gel filtration. This motivated Teizo Yoshimura and Kouji Matsushima to purify the monocyte-derived neutrophil chemotactic factor (MDNCF), present in LPS conditioned media and molecularly clone the cDNA for MDNCF. They found that MDNCF protein (later renamed IL-8, and finally termed CXCL8) is first translated as a precursor form consisting of 99 amino acid residues and the signal peptide is then removed, leading to the secretion and processing of biologically active IL-8 of 72 amino acid form (residues 28–99). There are four cysteine residues forming two disulfide linkage and 14 basic amino acid residues which result in a very basic property for the binding of IL-8 to heparan sulfate-proteoglycan. The IL-8 gene consists of 4 exons and 3 introns. IL-8 is produced by various types of cells in inflammation. The 5′-flanking region of IL-8 gene contains several nuclear factor binding sites, and NF-κB in combination with AP-1 or C/EBP synergistically activates IL-8 gene in response to IL-1 and TNFα. Two receptors exist for IL-8, CXCR1 and CXCR2 in humans, which belong to γ subfamily of GTP binding protein (G-protein) coupled rhodopsin-like 7 transmembrane domain receptors. Rodents express CXCR2 and do not produce IL-8, but produce numerous homologues instead. Once IL-8 binds to the receptor, β and γ subunits of G-protein are released from Gα (Gαi2 in neutrophils) and activate PI3Kγ, PLCβ2/β3, PLA2 and PLD. Gαi2 inhibits adenyl cyclase to decrease cAMP levels. Small GTPases Ras/Rac/Rho/cdc42/Rap1, PKC and AKT (PKB) exist down-stream of β and γ subunits and regulate cell adhesion, actin polymerization, membrane protrusion, and eventually cell migration. PLCβ activation generates IP3 and induces Ca++ mobilization, DAG generation to activate protein kinase C to lead granule exocytosis and respiratory burst. MDNCF was renamed interleukin 8 (IL-8) at the International Symposium on Novel Neutrophil Chemotactic Activating Polypeptides, London, UK in 1989. The discovery of IL-8 prompted us to also purify and molecularly clone the cDNA of MCAF/MCP-1 responsible for monocyte chemotaxis, and other groups to identify a large family of chemotactic cytokines capable of attracting other types of leukocytes. In 1992, most of the investigators contributing to the discovery of this new family of chemotactic cytokines gathered in Baden, Austria and agreed to name this family "chemokines" and subsequently established the CXCL/CCL and CXCR/CCR nomenclature. The discovery of chemokines resulted in solving the long-time enigma concerning the mechanism of cell type specific leukocyte infiltration into inflamed tissues and provided a molecular basis for immune and hematopoietic cell migration and interactions under physiological as well as pathological conditions. To our surprise based on its recently identified multifunctional activities, IL-8 has evolved from a neutrophil chemoattractant to a promising therapeutic target for a wide range of inflammatory and neoplastic diseases. IL-8 was initially characterized as a chemoattractant of neutrophils engaged in acute inflammation and then discovered to also be chemotactic for endothelial cells with a major role in angiogenesis. These two activities of IL-8 foster its stimulatory effect on tumor growth. This is abetted by recent additional discoveries showing that IL-8 has stimulatory effects on stem cells and can therefore directly promote the growth of receptor expressing cancer stem cells. IL-8 by interacting with bone marrow stem/progenitor cells has also the capacity to mobilize and release hematopoietic cells into the peripheral circulation. This includes the mobilization of neutrophilic myeloid-derived suppressor cells (N-MDSC) to infiltrate into tumors and thus further promotes the immune escape of tumors. Finally, the capacity of IL-8 to induce trans-differentiation of epithelial cancer cells into mesenchymal phenotype (EMT) increases the malignancy of tumors by promoting their metastatic spread and resistance to chemotherapeutics and cytotoxic immune cells. These observations have stimulated considerable current efforts to develop receptor antagonists for IL-8 and humanized anti-IL-8 antibody for the therapy of cancer, particularly in combination with immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到 ,获得积分10
1秒前
瑾年完成签到,获得积分10
3秒前
3秒前
狂野的微笑完成签到,获得积分10
4秒前
4秒前
7秒前
8秒前
11秒前
12秒前
乐乐应助adasdad采纳,获得10
12秒前
小逊完成签到,获得积分10
12秒前
Lucas应助速速接采纳,获得10
13秒前
Orange应助batman1999采纳,获得30
13秒前
14秒前
guzhenyang完成签到,获得积分10
15秒前
jdh发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
pcyang完成签到,获得积分10
19秒前
Wendy完成签到,获得积分10
19秒前
WANGSONGLU发布了新的文献求助10
19秒前
capvirgo完成签到 ,获得积分10
19秒前
Akim应助HUANWANG采纳,获得10
19秒前
19秒前
20秒前
莫等闲完成签到,获得积分10
20秒前
YangTzeePlus发布了新的文献求助10
21秒前
慕青应助心外科医生采纳,获得10
21秒前
21秒前
英姑应助li采纳,获得10
21秒前
落 风完成签到,获得积分10
22秒前
深情安青应助草莓公主bb采纳,获得10
22秒前
chaofan完成签到 ,获得积分10
24秒前
无误发布了新的文献求助10
25秒前
壮观的寒松完成签到,获得积分10
26秒前
26秒前
Hzc发布了新的文献求助10
26秒前
WANGSONGLU完成签到,获得积分20
27秒前
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182