亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in scanning transmission electron microscopy

扫描透射电子显微镜 纳米技术 计算机科学 材料科学 人工智能 物理 透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:85
标识
DOI:10.1038/s43586-022-00095-w
摘要

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
3秒前
Yikao完成签到 ,获得积分10
6秒前
7秒前
9秒前
CipherSage应助yanyuqing采纳,获得10
10秒前
FEMTO完成签到 ,获得积分10
13秒前
15秒前
早上坏发布了新的文献求助10
17秒前
Ykaor完成签到 ,获得积分10
34秒前
36秒前
40秒前
Aug31完成签到 ,获得积分10
42秒前
46秒前
楠楠2001完成签到 ,获得积分10
48秒前
51秒前
上官若男应助Pluto采纳,获得10
52秒前
冷傲迎梅完成签到 ,获得积分10
59秒前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
梁梁完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
超帅的碱应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
火星上小珍完成签到,获得积分10
1分钟前
1分钟前
2612发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
包子完成签到,获得积分10
1分钟前
忧郁小鸽子完成签到,获得积分10
1分钟前
2612完成签到,获得积分20
1分钟前
胡萝卜完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
善学以致用应助安详砖家采纳,获得10
1分钟前
卡耐基发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490