Machine learning in scanning transmission electron microscopy

扫描透射电子显微镜 纳米技术 计算机科学 材料科学 人工智能 物理 透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:85
标识
DOI:10.1038/s43586-022-00095-w
摘要

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZC10完成签到,获得积分10
刚刚
1秒前
黑羊完成签到,获得积分10
1秒前
自律的王一博完成签到,获得积分10
2秒前
Akim应助ale采纳,获得10
3秒前
Criminology34应助喻初原采纳,获得10
3秒前
4秒前
小蒋发布了新的文献求助20
4秒前
5秒前
ZF发布了新的文献求助10
5秒前
5秒前
5秒前
隐形曼青应助北月采纳,获得10
5秒前
5秒前
6秒前
遇见完成签到,获得积分10
6秒前
FyD发布了新的文献求助10
6秒前
6秒前
洛兮完成签到,获得积分10
6秒前
Lucas应助飞在夏夜的猫采纳,获得10
6秒前
慕青应助小宋采纳,获得10
6秒前
zgrmws应助we采纳,获得20
6秒前
7秒前
书岩完成签到,获得积分10
7秒前
7秒前
tpkkcdd完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
lan完成签到 ,获得积分10
9秒前
雪梨发布了新的文献求助20
10秒前
彭于晏应助Yuan采纳,获得30
10秒前
希望天下0贩的0应助lk采纳,获得10
10秒前
una完成签到 ,获得积分10
10秒前
聪明的bala给聪明的bala的求助进行了留言
10秒前
zsyhcl应助夏小胖采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406