Machine learning in scanning transmission electron microscopy

扫描透射电子显微镜 纳米技术 计算机科学 材料科学 人工智能 物理 透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:75
标识
DOI:10.1038/s43586-022-00095-w
摘要

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
choyukyan完成签到,获得积分20
1秒前
2秒前
Orange应助Maisyuki采纳,获得30
2秒前
2秒前
八九寺完成签到,获得积分20
4秒前
zxw发布了新的文献求助10
6秒前
Nana发布了新的文献求助10
7秒前
Dunna发布了新的文献求助10
9秒前
9秒前
子车茗应助加菲丰丰采纳,获得10
10秒前
高lucky完成签到,获得积分10
10秒前
11秒前
13秒前
完美世界应助海4015采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
无私的香菇完成签到,获得积分10
13秒前
橘子星发布了新的文献求助10
15秒前
慕青应助whr采纳,获得10
15秒前
wen发布了新的文献求助10
16秒前
sophia发布了新的文献求助20
18秒前
CFF发布了新的文献求助10
18秒前
19秒前
wen关注了科研通微信公众号
19秒前
20秒前
20秒前
21秒前
21秒前
李爱国应助沉默醉柳采纳,获得10
21秒前
Rita发布了新的文献求助10
24秒前
老刀发布了新的文献求助10
25秒前
25秒前
完美的以寒完成签到 ,获得积分10
26秒前
Lynn发布了新的文献求助10
26秒前
Jasper应助wangjing采纳,获得10
26秒前
nanonamo发布了新的文献求助10
26秒前
26秒前
27秒前
CFF完成签到,获得积分10
28秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170078
求助须知:如何正确求助?哪些是违规求助? 2821302
关于积分的说明 7933399
捐赠科研通 2481557
什么是DOI,文献DOI怎么找? 1321856
科研通“疑难数据库(出版商)”最低求助积分说明 633422
版权声明 602567