扫描透射电子显微镜
纳米技术
计算机科学
材料科学
人工智能
物理
透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
标识
DOI:10.1038/s43586-022-00095-w
摘要
Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI