Machine learning in scanning transmission electron microscopy

扫描透射电子显微镜 纳米技术 计算机科学 材料科学 人工智能 物理 透射电子显微镜
作者
Sergei V. Kalinin,Colin Ophus,Paul M. Voyles,Rolf Erni,Demie Kepaptsoglou,Vincenzo Grillo,Andrew R. Lupini,Mark P. Oxley,Eric Schwenker,Maria K. Y. Chan,Joanne Etheridge,Xiang Li,Grace G. D. Han,Maxim Ziatdinov,Naoya Shibata,Stephen J. Pennycook
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:85
标识
DOI:10.1038/s43586-022-00095-w
摘要

Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments and novel scanning modes. Scanning transmission electron microscopy (STEM) is a powerful tool for structural and functional imaging of materials. In this Primer, Kalinin et al. focus on the integration of machine learning and STEM to improve user experience and enhance current opportunities in STEM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观帅哥发布了新的文献求助10
1秒前
2秒前
n11完成签到,获得积分10
2秒前
2秒前
lingzhi完成签到 ,获得积分10
2秒前
2秒前
艾米完成签到,获得积分10
3秒前
不默生完成签到 ,获得积分10
4秒前
yu完成签到 ,获得积分10
4秒前
JIA完成签到 ,获得积分10
4秒前
lucid完成签到,获得积分10
6秒前
疯狂的青枫完成签到,获得积分10
6秒前
6秒前
兆吉完成签到 ,获得积分10
7秒前
羊白玉完成签到 ,获得积分10
7秒前
易琚发布了新的文献求助10
9秒前
10秒前
10秒前
聪慧的正豪应助浮浮世世采纳,获得10
10秒前
yy完成签到 ,获得积分10
11秒前
11秒前
fann完成签到,获得积分10
11秒前
十八发布了新的文献求助10
14秒前
14秒前
逢考必过完成签到 ,获得积分10
15秒前
科研通AI6应助优美的迎松采纳,获得30
16秒前
钟慧完成签到,获得积分10
16秒前
笛卡尔发布了新的文献求助10
17秒前
英姑应助11111111采纳,获得10
17秒前
浮游应助亚李采纳,获得10
18秒前
18秒前
乐观帅哥完成签到,获得积分10
19秒前
20秒前
酷波er应助十八采纳,获得10
20秒前
辣条治便秘完成签到,获得积分20
20秒前
喝一碗粥完成签到,获得积分10
20秒前
JXL发布了新的文献求助10
21秒前
21秒前
Zhang完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221