Prediction of 12 Photonic Crystal Fiber Optical Properties Using MLP in Deep Learning

光子晶体光纤 材料科学 数值孔径 包层(金属加工) 多层感知器 人工神经网络 灵敏度(控制系统) 光学 光纤 折射率 双折射 光子晶体 光电子学 计算机科学 电子工程 纤维 人工智能 复合材料 波长 物理 工程类
作者
Md. Asaduzzaman Jabin,Mable P. Fok
出处
期刊:IEEE Photonics Technology Letters [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 391-394 被引量:27
标识
DOI:10.1109/lpt.2022.3157266
摘要

In this letter, we proposed the use of feed-forward multilayer perceptron in deep learning-based artificial neural network (ANN) to accurately predict 12 optical parameters of silica-based photonic crystal fiber (PCF) within milliseconds using 6 input parameters. The optimized ANN has 3 hidden layers and each layer has 50 neurons. The PCF has several hexagonal-shaped layers with circular air holes, and it uses silica as the cladding and FK51A glass as the core. The PCF parameters that have been successfully predicted include birefringence, chromatic dispersion, effective area, effective refractive index, nonlinear coefficient, numerical aperture, power fraction, relative sensitivity, V-parameter, and loss profiles such as confinement loss, effective material loss, and scattering loss. The prediction has high accuracy with a loss of only 0.00567 and a learning rate of 0.0001. 7-fold validation and batching are used to increase scalability during validation. The proposed ANN is over 99.9% faster than conventional numerical simulation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZR666888完成签到,获得积分10
刚刚
坦率抽屉发布了新的文献求助10
2秒前
2秒前
韩恩轩发布了新的文献求助10
4秒前
结实的蘑菇完成签到 ,获得积分10
4秒前
4秒前
萧寒发布了新的文献求助10
7秒前
Verity应助张zhang采纳,获得10
7秒前
8秒前
9秒前
10秒前
12秒前
fanfan完成签到 ,获得积分10
12秒前
我是老大应助一蓑烟雨1122采纳,获得10
14秒前
wk发布了新的文献求助10
15秒前
阳光发布了新的文献求助10
16秒前
白子双发布了新的文献求助10
17秒前
17秒前
研友_VZG7GZ应助极电采纳,获得10
18秒前
19秒前
24秒前
25秒前
Mia233完成签到 ,获得积分10
25秒前
李健应助科研通管家采纳,获得30
25秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
ding应助科研通管家采纳,获得10
26秒前
戴亮应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
yyzhou应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
27秒前
慕青应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915