The path of depression among frontline nurses duringCOVID‐19 pandemic: A fuzzy‐set qualitative comparative analysis

定性比较分析 萧条(经济学) 2019年冠状病毒病(COVID-19) 大流行 路径分析(统计学) 集合(抽象数据类型) 心理学 医学 疾病 计算机科学 病理 机器学习 传染病(医学专业) 经济 宏观经济学 程序设计语言
作者
Leilei Liang,Tongshuang Yuan,Xinmeng Guo,Cuicui Meng,Jialin Lv,Junsong Fei,Songli Mei
出处
期刊:International Journal of Mental Health Nursing [Wiley]
卷期号:31 (5): 1239-1248 被引量:9
标识
DOI:10.1111/inm.13033
摘要

This study aimed to explore the combination of different conditional variables that led to depressive symptoms among frontline nurses who were fought against COVID-19 during the outbreak in Wuhan City, Hubei Province of China. The study was conducted in August 2020, which included 331 frontline clinical nurses who supported Wuhan's fight against COVID-19. The age range was 21-57 years and included 315 female nurses and 16 male nurses. This study used the fuzzy-set qualitative comparative analysis research method to explore the path of depression among frontline nurses. This study generated nine different configurations for the path of depression among frontline nurses, and had a detailed demonstration for each configuration. Each configuration distinguishes the different effects of influencing factors. For example, in the first configuration, gender, sleep disorder and PTSD exist as core conditions, while social support exists as a core condition lack. This study was presented results which was different what linear regression model reports. It takes into consideration the combined effect of each conditional variable on the development of depression. Nurse managers should pay attention to the combination of multiple influencing factors, instead of focus on single factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助左悬月采纳,获得10
1秒前
2秒前
英俊酬海完成签到,获得积分10
3秒前
4秒前
枯木发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
轻松小刺猬完成签到,获得积分10
8秒前
11秒前
Slience完成签到,获得积分20
11秒前
空竹完成签到,获得积分10
11秒前
13秒前
13秒前
haifang发布了新的文献求助10
13秒前
zxxxx完成签到,获得积分20
15秒前
我爱螺蛳粉完成签到 ,获得积分10
17秒前
科研通AI2S应助张夏天采纳,获得10
17秒前
freya发布了新的文献求助30
19秒前
19秒前
20秒前
科研通AI2S应助枯木采纳,获得10
20秒前
20秒前
22秒前
英姑应助whn采纳,获得10
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503