Identification and quantification of ageing mechanisms in Li-ion batteries by Electrochemical impedance spectroscopy.

介电谱 电池(电) 降级(电信) 锂(药物) 容量损失 材料科学 健康状况 锂离子电池 电化学 计算机科学 化学 功率(物理) 电信 电极 热力学 物理 物理化学 内分泌学 医学
作者
Erika Téliz,C.F. Zinola,Verónica Díaz
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:426: 140801-140801 被引量:59
标识
DOI:10.1016/j.electacta.2022.140801
摘要

Transportation sector reported almost a quarter of global CO2 emissions. Thus, efforts to decarbonize this sector are essential for achieving net zero emission goals. Among the actions to mitigate the effects of climate change in favor to decarbonization, lithium-ion electric vehicle market has expanded over the past years because of both scientific advances and encouraging public policies. The analysis of ageing in lithium-ion batteries is essential to ensure optimal performance and determine the end of the useful life for that purpose. Lithium-ion batteries degradation is a complex multi-causal process. Ageing mechanisms could be grouped mainly into three degradation modes: Loss of Conductivity (CL), Loss of Active Material (LAM) and Loss of Lithium Inventory (LLI). Ageing battery process can be evaluated as a state of health (SoH) and tracked based on capacity and power. Although SoH quantifies the battery degradation through the decrease in capacity, its definition does not include an indication of the underlying deterioration mechanisms causing the degradation. Combined with electrochemical impedance spectroscopy (EIS), degradation modes can be identified and quantified non-destructively with the aim of finding a correlation between their evolutions with SoH. This paper proposes a method to identify and measure the ageing mechanisms in commercial 18650 NMC lithium-ion batteries over time using the EIS technique. The EIS spectra were fitted to a proper equivalent electrical circuit and the main mechanisms responsible for the degradation identified through the calculated parameters variations with time. Thus, the increase in Rohm was assigned to CL, Rsei and Rct with LLI and Rw with LAM. Correlation between degradation modes with SoH was also reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pauline完成签到,获得积分10
刚刚
jackie发布了新的文献求助10
刚刚
笨笨摇伽发布了新的文献求助10
2秒前
科目三应助皓月繁星采纳,获得10
2秒前
tomato完成签到,获得积分20
4秒前
CodeCraft应助缘一采纳,获得10
5秒前
小二郎应助刘铭晨采纳,获得10
5秒前
5秒前
大个应助风雨1210采纳,获得10
5秒前
一壶清酒完成签到,获得积分10
5秒前
6秒前
tomato发布了新的文献求助30
7秒前
陈莹发布了新的文献求助10
8秒前
9秒前
9秒前
小狗同志006完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
皓月繁星完成签到,获得积分10
10秒前
ZeJ发布了新的文献求助10
11秒前
11秒前
12秒前
usrcu完成签到 ,获得积分10
12秒前
122x应助赖道之采纳,获得10
13秒前
厉不厉害你坤哥完成签到,获得积分10
13秒前
wuzhizhiya发布了新的文献求助10
14秒前
14秒前
14秒前
皓月繁星发布了新的文献求助10
15秒前
15秒前
迷路白桃发布了新的文献求助20
15秒前
ZeJ完成签到,获得积分10
16秒前
景别发布了新的文献求助10
16秒前
16秒前
NexusExplorer应助陈莹采纳,获得10
17秒前
GXY发布了新的文献求助10
17秒前
嘟嘟发布了新的文献求助10
18秒前
20秒前
Akim应助单纯的雅香采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808