Significantly improved thermoelectric properties of Nb-doped ZrNiSn half-Heusler compounds

热电效应 热导率 材料科学 热电材料 兴奋剂 凝聚态物理 休斯勒化合物 塞贝克系数 声子散射 体积模量 复合材料 热力学 冶金 光电子学 物理 金属
作者
Ruonan Min,Yanxia Wang,Xue Jiang,Rongchun Chen,Huijun Kang,Enyu Guo,Zongning Chen,Xiong Yang,Tongmin Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:449: 137898-137898 被引量:17
标识
DOI:10.1016/j.cej.2022.137898
摘要

ZrNiSn-based n-type half-Heusler (HH) compounds are listed among the mid-high temperature thermoelectric materials with excellent thermoelectric properties because they have a high power factor (PF). However, the thermal conductivity of HH compounds remains high, especially for the lattice thermal conductivity and bipolar thermal conductivity, which limits their application. In this work, we have enhanced the thermoelectric and mechanical properties of ZrNiSn-based compounds by Nb doping, which is realized by replacing Zr sites with Nb. As a consequence, the PF is enhanced from 3.25 mW mK−2 for pristine ZrNiSn to 4.78 mW mK−2 for Zr0.96Nb0.04NiSn, while the lattice thermal conductivity respectively declines from 4.5 W m-1K−1 to 2.58 W m-1K-1at 1123 K. Combined experimental results and ab-initio calculations revealed the increase in PF is because of that Nb-doping can significantly improve the electrical conductivity through a lot of carrier injection. The reduction of lattice thermal conductivity is primarily due to that Nb doping can generate quantum dots in the matrix causing the phonon scattering for the Nb-rich quantum dots and cause the mass and stress field fluctuations, and Nb-doping can efficiently weaken the bipolar thermal effect further reducing the thermal conductivity. A maximum ZT value of 0.89 within single-doped ZrNiSn compounds is achieved at 1123 K for Zr0.96Nb0.04NiSn, which is 53% higher than the pristine ZrNiSn. Furthermore, Nb doping effectively improves the microhardness, shear modulus, and Young's modulus of the ZrNiSn HH samples. The synthesized Hf-free HH compounds establish Nb as an effective dopant for attaining a high ZT and implying the excellent potential of these materials for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei菲飞发布了新的文献求助10
刚刚
fengwanru发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
zz发布了新的文献求助30
2秒前
小蘑菇应助科研达人采纳,获得10
3秒前
琳科研_文献完成签到,获得积分20
3秒前
xiongdi521发布了新的文献求助10
3秒前
4秒前
所所应助biancaliu采纳,获得30
5秒前
女汉子kaikai完成签到,获得积分10
5秒前
MM完成签到,获得积分10
5秒前
Alex发布了新的文献求助10
6秒前
6秒前
xiongdi521完成签到,获得积分10
6秒前
huanglu发布了新的文献求助10
6秒前
耶格尔发布了新的文献求助10
7秒前
科研通AI5应助舒心的老四采纳,获得10
7秒前
7秒前
李健应助头发还多采纳,获得10
7秒前
科研通AI5应助成阳采纳,获得30
8秒前
庸人何必自扰完成签到,获得积分10
10秒前
ZZC发布了新的文献求助10
10秒前
RiliT发布了新的文献求助30
10秒前
南墙发布了新的文献求助10
11秒前
11秒前
11秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
reflux应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
无花果应助火星上香菇采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267