Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wualexandra采纳,获得10
1秒前
wy发布了新的文献求助10
1秒前
啊呀完成签到,获得积分10
1秒前
lovekobe完成签到,获得积分10
2秒前
kk完成签到,获得积分10
2秒前
魔幻的盼芙完成签到 ,获得积分10
2秒前
psychosocial发布了新的文献求助10
2秒前
3秒前
uraylong发布了新的文献求助10
3秒前
kk发布了新的文献求助10
4秒前
汉堡包应助Tiscen采纳,获得10
4秒前
斯文败类应助玉洁采纳,获得10
6秒前
6秒前
瓜姐完成签到,获得积分10
6秒前
PQ发布了新的文献求助10
7秒前
Lucas应助123456采纳,获得10
7秒前
121231完成签到,获得积分10
7秒前
7秒前
超体完成签到 ,获得积分10
8秒前
lk发布了新的文献求助10
8秒前
龙俊利完成签到,获得积分10
9秒前
Dowe应助mzone采纳,获得10
9秒前
止水应助goodnight采纳,获得30
9秒前
Lucas应助DJN0717采纳,获得10
9秒前
田家溢完成签到,获得积分10
10秒前
倒霉的芒果完成签到 ,获得积分10
11秒前
11秒前
打打应助蓝蜥蜴采纳,获得10
11秒前
12秒前
jack发布了新的文献求助10
12秒前
12秒前
大个应助孟双采纳,获得30
13秒前
13秒前
11发布了新的文献求助30
13秒前
英姑应助wy采纳,获得10
15秒前
miaomiaomiao发布了新的文献求助10
15秒前
上官若男应助lijing采纳,获得10
15秒前
成就飞柏完成签到,获得积分10
15秒前
在水一方应助鹿梦采纳,获得10
16秒前
桐桐应助booshu采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183