Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中外绣发布了新的文献求助10
刚刚
完美羿完成签到 ,获得积分10
刚刚
科研通AI6应助liz_采纳,获得50
刚刚
量子星尘发布了新的文献求助10
2秒前
FeCl完成签到,获得积分10
2秒前
3秒前
外向烤鸡发布了新的文献求助10
3秒前
香蕉觅云应助小龙采纳,获得20
3秒前
汤圆完成签到,获得积分10
3秒前
完美世界应助端庄芯采纳,获得10
4秒前
5秒前
帅气的小翟完成签到,获得积分10
5秒前
fanature发布了新的文献求助80
6秒前
6秒前
6秒前
滴滴发布了新的文献求助10
6秒前
7秒前
Jasper应助怕孤独的根号三采纳,获得10
8秒前
Yeong完成签到,获得积分10
9秒前
董舒婷发布了新的文献求助10
9秒前
善良的高烽完成签到 ,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
犹犹豫豫发布了新的文献求助10
10秒前
rui发布了新的文献求助10
11秒前
研友_Bn2Pl8发布了新的文献求助30
11秒前
科研通AI6应助Jere采纳,获得20
11秒前
珊明治发布了新的文献求助10
11秒前
ZXH完成签到 ,获得积分10
12秒前
科研通AI6应助结实天荷采纳,获得10
12秒前
13秒前
13秒前
情怀应助Smilingjht采纳,获得10
14秒前
英姑应助夜染采纳,获得10
14秒前
luluyang发布了新的文献求助10
15秒前
我是老大应助席碧采纳,获得20
16秒前
xiongyh10完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304