Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霖宸羽完成签到,获得积分10
刚刚
田様应助mml采纳,获得10
1秒前
奇奇吃面发布了新的文献求助10
1秒前
我是老大应助wxyllxx采纳,获得10
4秒前
七月不看海完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
7秒前
充电宝应助等待的道消采纳,获得10
8秒前
彭于晏应助麻薯头头采纳,获得10
8秒前
Li完成签到,获得积分10
9秒前
JJ发布了新的文献求助10
12秒前
yiyi131发布了新的文献求助10
12秒前
天真凡灵完成签到,获得积分10
12秒前
samuel完成签到,获得积分10
13秒前
14秒前
Jasper应助YY采纳,获得30
15秒前
科研通AI2S应助ccq采纳,获得10
17秒前
甜橙发布了新的文献求助10
18秒前
研友_ndDGVn发布了新的文献求助10
19秒前
dominate应助centlay采纳,获得10
20秒前
桐桐应助wxyllxx采纳,获得10
21秒前
24秒前
24秒前
26秒前
gdh发布了新的文献求助10
28秒前
28秒前
麻薯头头发布了新的文献求助10
31秒前
活泼酸奶完成签到,获得积分10
31秒前
long完成签到 ,获得积分10
32秒前
34秒前
34秒前
gdh完成签到,获得积分10
34秒前
38秒前
38秒前
阿波罗完成签到,获得积分10
40秒前
肖窈发布了新的文献求助10
44秒前
Owen应助wxyllxx采纳,获得20
45秒前
47秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023