亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助George采纳,获得10
9秒前
天天快乐应助现实的乐天采纳,获得10
10秒前
李爱国应助v哈哈采纳,获得10
23秒前
酷酷海豚完成签到,获得积分10
41秒前
47秒前
v哈哈发布了新的文献求助10
52秒前
lemon完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
赘婿应助lemon采纳,获得10
59秒前
Swear完成签到 ,获得积分10
1分钟前
绾妤完成签到 ,获得积分0
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
George发布了新的文献求助10
1分钟前
lemon发布了新的文献求助10
1分钟前
wanci应助George采纳,获得10
1分钟前
v哈哈完成签到 ,获得积分10
1分钟前
sun给sun的求助进行了留言
1分钟前
2分钟前
sun给sun的求助进行了留言
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
充电宝应助酷炫灰狼采纳,获得10
3分钟前
李爱国应助可靠的寒风采纳,获得10
3分钟前
TT完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399