Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Nicole采纳,获得10
1秒前
在水一方应助阳光采纳,获得10
1秒前
FashionBoy应助任性的老四采纳,获得10
2秒前
2秒前
开朗梦曼完成签到 ,获得积分20
2秒前
coollz发布了新的文献求助10
2秒前
2秒前
HuanhuanGao完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Molecule完成签到,获得积分10
4秒前
脑洞疼应助yuyu采纳,获得10
5秒前
5秒前
6秒前
SciGPT应助shais采纳,获得10
6秒前
飘逸的山柏完成签到 ,获得积分10
6秒前
6秒前
7秒前
嘴嘴完成签到 ,获得积分20
8秒前
usr12完成签到,获得积分10
8秒前
wuxunxun2015发布了新的文献求助10
8秒前
望空发布了新的文献求助10
9秒前
脑洞疼应助快乐花卷采纳,获得10
10秒前
11秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
大大大漂亮完成签到 ,获得积分10
12秒前
12秒前
YXT981221发布了新的文献求助10
12秒前
12秒前
一一应助炙热的墨镜采纳,获得20
13秒前
13秒前
科研通AI6应助绿灯请通行采纳,获得30
13秒前
14秒前
隐形的大有完成签到,获得积分10
14秒前
15秒前
无花果应助keke采纳,获得10
15秒前
研友_8RyzBZ发布了新的文献求助10
15秒前
打打应助高玉峰采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781