Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters

卷积神经网络 人工智能 计算机科学 深度学习 过度拟合 模式识别(心理学) 椎骨 人工神经网络 计算机视觉 医学 解剖
作者
Salih Furkan Atici,Rashid Ansari,Veerajalandhar Allareddy,Omar Suhaym,Ahmet Çetin,Mohammed H. Elnagar
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (7): e0269198-e0269198 被引量:6
标识
DOI:10.1371/journal.pone.0269198
摘要

Introduction We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. Methods A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. Results The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. Conclusion The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助啊呆哦采纳,获得10
4秒前
4秒前
兮颜完成签到 ,获得积分10
6秒前
Wanyeweiyu完成签到,获得积分10
6秒前
完犊子发布了新的文献求助10
6秒前
健脊护柱完成签到 ,获得积分10
7秒前
hebhm发布了新的文献求助10
7秒前
鱼雷完成签到,获得积分10
8秒前
852应助张欢采纳,获得10
12秒前
HI完成签到 ,获得积分10
14秒前
小昼完成签到 ,获得积分10
15秒前
16秒前
小蘑菇应助hebhm采纳,获得10
16秒前
平凡世界完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
含光完成签到,获得积分10
17秒前
小谭完成签到 ,获得积分10
17秒前
airtermis完成签到 ,获得积分10
18秒前
syl发布了新的文献求助10
20秒前
风雨霖霖完成签到,获得积分10
20秒前
山河星梦完成签到,获得积分10
23秒前
ZDM6094完成签到 ,获得积分10
24秒前
完犊子发布了新的文献求助10
25秒前
25秒前
28秒前
kxran发布了新的文献求助10
30秒前
TianFuAI完成签到,获得积分10
30秒前
张欢发布了新的文献求助10
31秒前
乐乐应助完犊子采纳,获得10
33秒前
闪闪的绣连完成签到,获得积分10
36秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
CodeCraft应助科研通管家采纳,获得20
36秒前
1111111111应助科研通管家采纳,获得10
36秒前
风清扬应助科研通管家采纳,获得100
36秒前
36秒前
36秒前
iuhgnor完成签到,获得积分0
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910726
求助须知:如何正确求助?哪些是违规求助? 4186414
关于积分的说明 12999570
捐赠科研通 3953936
什么是DOI,文献DOI怎么找? 2168187
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845