Multicomponent heterogeneous catalysts present excellent catalytic performance attributed to the synergistic effect of multi-sites. Nevertheless, identifying the composition of the multi-sites and exploring the synergistic catalytic mechanisms for the multiple active sites in electrocatalytic CO 2 reduction reaction (CO 2 RR) still lack intensive study. This work regulates the chemical composition of Cu-based nanoreactors readily by adjusting the geometrical morphology of metal-organic frameworks precursor. The obtained cuboctahedron nanoreactor containing Cu-N 4 /Cu 2 O/Cu multiple active sites exhibits excellent CO 2 RR selectivity towards deep reduction product (80%) with high current density. Moreover, the tandem catalytic mechanism of multicomponent active sites has been studied intensively. The CO 2 molecule is firstly reduced in Cu-N 4 sites to form CO and then the CO is transfered to Cu 2 O/Cu sites for further deep reduction. The high concentration of CO provided by Cu-N 4 sites decreases the free energy of rate-determining step for CH 4 products in Cu 2 O sites. This work provides a promising direction for designing and synthesizing multicomponent Cu-based tandem catalysts to access high efficiency and selectivity in the electrocatalytic CO 2 reduction reaction. The Cu-based nanoreactor with Cu-N 4 /Cu 2 O/Cu multicomponent active sites was designed. The tandem catalytic process in multicomponent active sites contributed to the high electrocatalytic CO 2 reduction reaction selectivity towards deep reduction product (80%) with high current density. • Intensively analyzing the valence and composition of multicomponent catalysts. • The content of Cu-based active sites deeply affects the catalytic performance. • The best selectivity of catalysts toward CH 4 and C 2 H 4 was up to 80% for CO 2 RR. • The multicomponent Cu-based active sites work in a tandem way for CO 2 RR.