An electrochemical nitric oxide (NO) reduction reaction (NORR) is proposed as an attractive method for simultaneous realization of NO removal and ammonia (NH3) synthesis. Here, the potentials of 29 transition-metal atoms anchored on the nitrogen-doped BP monolayer (MN3/BP) as efficient NORR catalysts are systematically examined using first-principles calculations. Combining the adsorption Gibbs free energies of the N and OH species, a simple descriptor is constructed and a volcano plot of the NORR limiting potentials on the single atom catalysts (SACs) is established. Consequently, the MoN3/BP and IrN3/BP SACs are picked out as promising NORR electrocatalysts for NH3 synthesis with the limiting potentials of -0.10 V and -0.06 V, respectively. Their corresponding rate constants are significantly larger than or close to that of the excellent Pt(111) surface. The electronic analysis shows that the Mo-4d or Ir-5d orbitals can be well hybridized with the NO-2p orbitals, sufficiently activating the adsorbed NO species. Particularly, the MoN3/BP and IrN3/BP SACs possess high thermal stabilities and can be easily synthesized by using MoCl3 and IrCl3 as precursors, respectively. This work not only offers a simple descriptor to efficiently design NORR electrocatalysts but also provides a comprehensive atomic understanding on the mechanism of NO-to-NH3 conversion.