Dynamic pricing and inventory management in the presence of online reviews

动态定价 采购 客户群 计算机科学 缺货 库存(枪支) 运筹学 利润(经济学) 微观经济学 业务 营销 经济 机械工程 工程类
作者
Nan Yang,Renyu Zhang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (8): 3180-3197 被引量:22
标识
DOI:10.1111/poms.13744
摘要

Abstract We study the joint pricing and inventory management problem in the presence of online customer reviews. Customers who purchase the product may post reviews that would influence future customers' purchasing behaviors. We develop a stochastic joint pricing and inventory management model to characterize the optimal policy in the presence of online reviews. We show that a rating‐dependent base‐stock/list‐price policy is optimal. Interestingly, we can reduce the dynamic program that characterizes the optimal policy to one with a single‐dimensional state space (the aggregate net rating). The presence of online reviews gives rise to the trade‐off between generating current profits and inducing future demands, thus having several important implications for the firm's operations decisions. First, online reviews drive the firm to deliver a better service and attract more customers to post a review. Hence, the safety‐stock and base‐stock levels are higher in the presence of online reviews. Second, the evolution of the aggregate net rating process follows a mean‐reverting pattern: When the current rating is low (respectively, high), it has an increasing (respectively, decreasing) trend in expectation. Third, although myopic profit optimization leads to significant optimality losses in the presence of online reviews, balancing current profits, and near‐future demands suffices to exploit the network effect induced by online reviews. We propose a dynamic look‐ahead heuristic policy that leverages this idea well and achieves small optimality gaps that decay exponentially in the length of the look‐ahead time window. Finally, we develop a general paid‐review strategy, which provides monetary incentives for customers to leave reviews. This strategy facilitates the retailer to (partially) separately generate current profits and induce future demands via the network effect of online reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MYZ完成签到,获得积分10
刚刚
越旻完成签到,获得积分10
1秒前
1秒前
大模型应助寻一采纳,获得10
1秒前
等待冬易完成签到,获得积分10
2秒前
2秒前
CodeCraft应助chace采纳,获得10
3秒前
隐形曼青应助luoluo采纳,获得10
3秒前
3秒前
繁荣的代秋完成签到,获得积分10
4秒前
深情安青应助南烟采纳,获得10
4秒前
Singularity应助2428采纳,获得10
4秒前
安静的难破完成签到,获得积分10
4秒前
上官若男应助zhangpeng采纳,获得10
4秒前
Sxr发布了新的文献求助10
5秒前
5秒前
星辰大海应助独特的万声采纳,获得10
5秒前
6秒前
6秒前
Andy完成签到 ,获得积分10
6秒前
Akim应助煎饼采纳,获得10
6秒前
7秒前
7秒前
aaa完成签到,获得积分10
8秒前
和谐诗柳完成签到 ,获得积分10
8秒前
认真子默发布了新的文献求助10
9秒前
整齐的书白完成签到,获得积分20
9秒前
10秒前
10秒前
小马甲应助爱笑的傲薇采纳,获得10
11秒前
Wuxg完成签到,获得积分10
11秒前
11秒前
哈哈发布了新的文献求助10
12秒前
一二三完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
可乐完成签到,获得积分10
14秒前
小Q啊啾发布了新的文献求助10
14秒前
Wuxg发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587